
 

 
- 

  

Securing Agentic 
Applications Guide 
OWASP Gen AI Security Project - Agentic Security 
Initiative 

Version 1.0 
July 28, 2025  
Status: Released 

 



 

Page 1 
 
genai.owasp.org - 

 
The information provided in this document does not, and is not intended to, constitute legal advice. All 
information is for general informational purposes only. This document contains links to other third-party 
websites. Such links are only for convenience and OWASP does not recommend or endorse the contents of 
the third-party sites.  

License and Usage: 

 This document is licensed under Creative Commons, CC BY-SA 4.0 

 You are free to:  

● Share — copy and redistribute the material in any medium or format  

● Adapt — remix, transform, and build upon the material for any purpose, even commercially.  

● Under the following terms: ○ Attribution — You must give appropriate credit, provide a link to the license, 
and indicate if changes were made. You may do so in any reasonable manner but not in any way that 
suggests the licensor endorses you or your use. ○ Attribution Guidelines - must include the project name as 
well as the name of the asset Referenced  

■ OWASP Top 10 for LLMs - GenAI Red Teaming Guide  

● Share Alike — If you remix, transform, or build upon the material, you must distribute your contributions 
under the same license as the original.  

Link to full license text: https://creativecommons.org/licenses/by-sa/4.0/legalcode  

 

 

 

 

 
 



 

Page 2 
 
genai.owasp.org - 

Table of Content 
1. Introduction 4 

1.1 Scope and Audience 4 

2. Secure Agentic Architectures 5 

2.1 Defining Key Components of Agentic Architectures 5 

2.2 Attack Surface Analysis 10 

2.3 Frameworks 23 

2.4. Key Components, Patterns, and Frameworks 25 

2.5 Case Studies 26 

3. Agentic Developer Guidelines 30 

Agentic AI Developer Security Guidelines: A Lifecycle 
Approach 30 

3.1. Secure Design & Development Phase 30 

3.2. Secure Build & Deployment Phase 35 

3.3. Secure Operations & Runtime Phase 38 

4. Enhanced Security Actions for Agentic AI Systems 46 

4.1. Single-Agent Systems 46 

4.2. Multi-Agent Systems with Central Orchestrator 51 

4.3. Multi-Agent Systems with Swarm Architecture 54 

5. Key Operational Capabilities 57 

5.1. KC6.1 – API Access 57 

5.2. KC6.2 – Code Execution 58 

5.4. KC6.4 – Web Use 60 



 

Page 3 
 
genai.owasp.org - 

5.5. KC6.5 – Controlling PC Operations (Filesystem, OS Commands) 61 

5.6. KC6.6 – Operating Critical Systems (e.g., SCADA controls) 62 

6. Agentic AI and the Supply Chain 63 

6.1 Code Security 63 

6.2 Environments & Development 63 

6.3 Agent & Tool Discovery 64 

7. Assuring Agentic Applications 65 

7.1. Red Teaming Agentic Applications: 65 

7.2. Behavioral Testing for Agentic Applications: 68 

8. Secure Agentic Deployments 72 

9. Runtime hardening. 74 

9.1 Harden the Virtual Machine (Base Level) 74 

9.2 Contain the Agentic Runtime 75 

9.3 Secure the Agent’s Memory, Tools, and Context 75 

9.4 Observability + Forensics 76 

9.6 (Optional) Cloud-Specific Hardening 77 

Acknowledgements 78 

OWASP Top 10 for LLM Project Sponsors 79 

Project Supporters 80 

 

 

 

  



 

Page 4 
 
genai.owasp.org - 

1. Introduction 
 

This guide aims to provide practical and actionable guidance for designing, developing, and deploying secure 
agentic applications powered by large language models (LLMs). It complements the OWASP Agentic AI 
Threats and Mitigations (ASI T&M) document by focusing on concrete technical recommendations that 
builders and defenders can apply directly. 

1.1 Scope and Audience 
Audience: This guide is primarily intended for software developers, AI/ML engineers, security architects, 
security engineers, and technical leads involved in building, securing, or assessing workflow and agentic AI 
applications.   

In Scope: 

• Technical security controls and best practices for agentic systems. 
• Secure architectural patterns specific to agentic AI. 
• Mitigation strategies for common agentic threats. 
• Guidance across the development lifecycle (design, build, deploy, operate). 
• Considerations for key components like LLMs, orchestration, memory, tools, and operational 

environments. 
• Examples of applying security principles in different agentic architectures (single-agent, multi-

agent, etc.). 

Out of Scope: 

• High-level governance frameworks, organizational policies, or CISO-level strategic guidance (These 
will be addressed in a separate "Managing Agentic Risk Guide"). 

• Detailed implementation guides for specific vendor platforms or frameworks (though examples may 
be used illustratively). 

• Ethical considerations beyond their direct impact on security implementation (e.g., bias mitigation 
strategies unrelated to security vulnerabilities). 

• Legal and compliance requirements specific to jurisdictions or industries, although the principles 
discussed support compliance efforts. 

• The document does not cover governance and CISO-related guidelines, which will be covered in 
subsequent guidelines. 

 



 

Page 5 
 
genai.owasp.org - 

1.3 Relationship with other ASI work 
This document is part of the broader OWASP Agentic Security Initiative (ASI) and is designed to work along 
with other ASI resources. Specifically: 

• ASI Threats & Mitigations (T&M): This guide provides practical implementation details and 
architectural context for the mitigations proposed in the T&M document. Where the T&M list 
identifies what threats exist and what mitigations are needed, this guide focuses on how to 
implement those mitigations technically. We reference the T-codes (e.g., T1, T2) from the T&M list 
throughout this document. 

• ASI Red Teaming Guide: This guide provides the builder and defender perspective, outlining 
controls that red teams (following the Red Teaming Guide) would test. Understanding the defenses 
detailed here is crucial for effective red teaming simulation design. 

Essentially, this guide translates the conceptual threats and mitigation principles from other ASI work into 
actionable architectural patterns and developer guidelines. 

 

2. Secure Agentic 
Architectures 
2.1 Defining Key Components of Agentic Architectures 
KC1 Generative Language Models: The "brain" (Cognitive engine) of the agent (e.g., GPT-4, Claude), 
responsible for understanding, reasoning, planning, and generating responses. LLMs are often built on pre-
trained foundation models, which provide broad knowledge and can be specialized using techniques like 
prompt engineering or fine-tuning. 

● KC1.1 Large Language Models (LLMs): The core cognitive engine ("brain") utilizing pre-trained 
foundation models (e.g., GPT series, Claude series, Llama series, Gemini series) for reasoning, 
planning, and generation, primarily directed via prompt engineering and operating within 
constraints like context window, latency, and cost. 

● KC1.2 Multimodal LLMs (MLLMs): LLMs capable of processing and/or generating information across 
multiple data types beyond text (e.g., images, audio), enabling agents to perform a wider variety of 
tasks involving visual or auditory information (e.g., GPT-4V, Gemini). 

● KC1.3 Small-Language Model (SLMs): Language models with fewer parameters, which are trained 
on much smaller, more focused datasets. SLMs are generally designed to perform a specific task or 



 

Page 6 
 
genai.owasp.org - 

work in a particular use case, rather than wielding the large, generalized capabilities found in an 
LLM. SLMs are characterized by a smaller weight space, parameter size, and context window when 
compared with LLMs. 

● KC1.4 Fine-tuned Models: Language models (LLMs / MLLMs) that undergo additional training on 
specific datasets to specialize their capabilities, enhancing performance, adopting personas, or 
improving reliability for particular tasks, domains, or interaction styles required by the agent. For 
example, Supervised Fine Tuning (SFT) and Circuit Breakers (CB) have been found to bring promising 
scoping benefits to reduce the propensity to provide answers to out-of-scope topics. 

KC2 Orchestration (Control Flow Mechanisms): Dictate the agent's overall behavior, information flow, and 
decision-making processes. The specific mechanism (e.g., “sequential” for layered architectures, “dynamic” 
for blackboard architectures, or “coordinated” for multi-agent systems) depends on the architecture and 
impacts the agent's responsiveness and efficiency. 

● KC2.1 Workflows: A structured, pre-defined sequence of tasks or steps that agents follow to 
achieve a goal. Workflows define the flow of information and actions within the agent's operation 
and among agents. They can be linear, conditional, or iterative, depending on the task’s complexity.  

● KC2.2 Hierarchical Planning: Multiple agents collaborating via an orchestrator (router). The 
orchestrator plays a central role in this process. It is responsible for:  

○ Understanding the Task: The orchestrator receives the initial complex task or request. 

○ Decomposing the Task: The orchestrator then analyzes the task and breaks it down into a 
series of sub-tasks. 

○ Routing to Specialized Agents: The orchestrator identifies which specialized agent is best 
suited to handle each sub-task and assigns the sub-task accordingly. 

○ Orchestrator monitors agent performance, identifies inefficiencies, and autonomously 
adjusts workflows to optimize efficiency. 

○ The Orchestrator can interface with the user directly or with a “master” agent that helps 
coordinate the various agents. 

● KC2.3 Multi-agent Collaboration: This involves multiple agents working together to achieve a 
common goal. Agents can communicate and coordinate their actions, sharing information and 
resources. This approach is useful for complex tasks that require diverse skills or knowledge. For 
example, one agent might be responsible for data collection, while another is responsible for 
analysis, and a third is responsible for decision-making. 



 

Page 7 
 
genai.owasp.org - 

KC3 Reasoning / Planning Paradigm: Agents utilize LLMs to solve complex tasks requiring multiple steps 
using strategic thinking. To do so, agents break down high-level tasks into smaller tasks (steps), each with a 
different sub-goal. 

Enable AI agents to solve complex problems requiring multiple steps and logical thinking. 

● KC3.1 Structured Planning / Execution (e.g., ReWoo, LLM Compiler, Plan-and-Execute), focuses on: 

○ Decomposing tasks into a formal plan. 

○ Defining sequences of actions, often involving specific tool calls. 

○ Executing the plan, sometimes using separate "planner" and "executor" components. 

● KC3.2 ReAct (Reason + Act): Dynamically interleaves reasoning steps with actions (like using tools 
or querying APIs) and updates reasoning based on feedback. 

● KC3.3 Chain of Thought (CoT): Enhances reasoning quality by prompting step-by-step "thinking", 
inducing an LLM to generate a set of “thoughts” before arriving and a final action or conclusion. 

● KC3.4 Tree of Thoughts (ToT): Generalizes CoT by exploring multiple reasoning paths and plans in 
parallel with lookahead, backtracking, and self-evaluation. 

KC4 Memory Modules: Enable the agent to retain short-term (immediate context) and long-term 
information (past interactions, knowledge) for coherent and personalized interactions. Context “sensitivity” 
(classification or compartmentalization) is used to reduce the risk of unauthorized information exposure. 
Retrieval-Augmented Generation (RAG) used with a vector database is common for long-term memory, 
allowing agents to retrieve and incorporate external knowledge using semantic search.  

● KC4.1 In agent session memory: Memory is limited to a single agent and a single session, limiting 
the ability to compromise additional agents/sessions if compromised. 

● KC4.2 Cross-agent session memory: Memory is shared across multiple agents, but is limited to a 
single session, limiting the ability to compromise additional sessions, but a single compromised 
agent might compromise multiple agents operating at the same session.  

● KC4.3 In agent cross-session memory: Memory is limited to a single agent, but is shared across 
multiple sessions, limiting the ability to compromise additional agents, but one compromised 
session might still cause compromising multiple sessions. 



 

Page 8 
 
genai.owasp.org - 

● KC4.4 Cross-agent cross-session memory: Memory is shared across multiple agents and sessions. 
If an agent is compromised in a specific session, it might compromise additional sessions and or 
agents.  

● KC4.5 In agent cross-user memory: Memory is limited to a single agent but is shared across 
multiple users. A compromised agent might have the ability to compromise multiple users. 

● KC4.6 Cross-agent cross-user: Memory is shared across multiple agents and users. A 
compromised agent might have the ability to compromise additional agents and users. 

KC5 Tool Integration Frameworks: Allow agents to extend their capabilities beyond text by using external 
tools (APIs, functions, data stores) to interact with the real world or other systems. Tool integration 
framework is used to manage the selection and use of these tools.  These frameworks offer various "Agent" 
types, for example ReAct, Self-Ask, and OpenAI Functions Agent. 

● KC5.1 Flexible Libraries / SDK Features: These provide code-level building blocks (e.g.,  LangChain, 
AG2, Agents, CrewAI, MCP ) or specific API capabilities (like OpenAI's Tool Use feature) for 
developers. They offer high flexibility and control over agent behavior and tool orchestration, but 
require more coding effort and technical expertise to implement and manage the full agent loop. 

● KC5.2 Managed Platforms / Services: These are vendor-provided solutions (like Amazon Bedrock 
Agents, Microsoft Copilot Platform) that handle infrastructure, simplify setup, and manage much of 
the orchestration for building agents with tools. They often feature easier integration within the 
provider's ecosystem and may include low-code interfaces, trading some flexibility for faster 
development and deployment. 

● KC5.3 Managed APIs: Similar to managed platforms but often emphasizing the API as the main 
interaction point, these are vendor-hosted services (like OpenAI's Assistants API) providing higher-
level abstractions. They manage complexities like state and aspects of tool orchestration via API 
calls, making it easier to build sophisticated, stateful agents compared to using basic SDK features 
alone. 

KC6 Operational Environment  (Agencies): Though Large Language Models (LLMs) are restricted to the data 
available up to their last training update, agents can interface with external environments through tools and 
function calls. Utilizing different agencies enables interaction with, gather, and process information from 
external environments, allowing them to operate effectively within them. 

● KC6.1 API Access : 

○ KC6.1.1 Limited API Access: An agent utilizing LLM capabilities to generate some of the 
parameters to a predefined API call (e.g., an agent utilizing LLM to generate a parameter 



 

Page 9 
 
genai.owasp.org - 

used in a predefined REST/GraphQL API call). A compromised agent might have the ability to 
launch attacks on the API (see OWASP Top 10 for API), via the parameters generated by the 
LLM, resulting in a parameter pollution attack.  

○ KC6.1.2 Extensive API Access: An agent utilizing LLM capabilities to generate the entire 
API call (e.g., an agent utilizing LLM to interactively traverse a GraphQL API or to generate 
the entire URL to a REST API). A compromised agent might have the ability to generate 
unwanted API calls on behalf of the user by utilizing the agent's excessive authorization, and 
to launch attacks on the API (see OWASP Top 10 for API). 

● KC6.2 Code Execution: 

○ KC6.2.1 Limited Code Execution Capability: An agent utilizing LLM capabilities to generate 
some of the parameters to a predefined function (e.g., an agent utilizing LLM to generate a 
parameter used in a predefined Python/PHP/JS function). A compromised agent might 
have the ability to launch code injection attacks (see OWASP code injection), via the 
parameters generated by the LLM. 

○ KC6.2.2 Extensive Code Execution Capability: An agent running code generated by an LLM.  
A compromised agent might have the ability to run arbitrary code 

●  KC6.3 Database Execution: 

○ KC6.3.1 Limited Database Execution Capability: An agent utilizing LLM capabilities to run 
specific queries or commands against a database. Limited database execution is 
characterized by an agent having a limited permission set, such as read-only permissions at 
the table or row level, and/or constructing write with access to only change certain 
parameters, using parameterization or pre-constructed queries. A compromised agent 
could exfiltrate a table from a database or write malformed/malicious data to a limited 
space in a database/table. 

○ KC6.3.2 Extensive Database Execution Capability: An agent utilizing LLM capabilities to 
generate and run all CRUD operations against a set of tables or complete database. A 
compromised agent might have the ability to alter any record in the database, delete a 
database/table, or access and leak any information stored within the database. 

○ KC6.3.3 Agent Memory or Context Data Sources (e.g., RAG agent): An agent utilizing an 
external data source to gain contextual information, or updates records in external sources 
based on user inputs. A compromised agent might disrupt data in the data source or provide 
malformed information retrieved from the data source. 



 

Page 10 
 
genai.owasp.org - 

● KC6.4 Web Access Capabilities (web-use):  An agent utilizing LLM for operating with the browser 
(e.g., OpenAI operator, browser-use). A compromised agent is likely to form due to exposure to 
untrusted web content, and it might perform unwanted operations on behalf of the user by utilizing 
the agent’s excessive authorization (e.g., changing sharing settings or account settings on open 
user sessions). 

● KC6.5 Controlling PC Operations (PC-use): An agent utilizing LLM for operating with the operating 
system, including file system (e.g., Anthropic computer use). A compromised agent might perform 
unwanted operations, expose or leak personal information, and perform malicious operations such 
as encrypting files. 

● KC6.6 Operating Critical Systems (e.g., SCADA): An agent using LLM to operate critical systems. 
Unauthorized operations in critical systems can lead to catastrophic failures. A compromised agent 
may cause severe disruptions in system operations. 

● KC6.7 Access to IoT Devices: Unauthorized control over IoT devices. A compromised agent could 
impact the operational environment hosting such IoT devices, potentially utilizing them in malicious 
or unintended ways (eg, drastically changing room temperature using an IoT-connected 
thermostat). 

2.2 Attack Surface Analysis 

2.2.1. KC1 - Large Language Models (LLMs) 

● T5 (Cascading Hallucination): Foundation models generate incorrect information that propagates 

● T6 (Intent Breaking): Attacks target the core decision-making capabilities 

● T7 (Misaligned Behaviors): Model alignment issues lead to unintended behaviors impacting users, 
organizations, or the broader population 

● T15 (Human Manipulation): Models exploit human trust to manipulate users 

2.2.2. KC2 - Orchestration (Control Flow) 

● T6 (Intent Breaking): Manipulates control flow to achieve unauthorized goals 

● T8 (Repudiation): Makes agent actions difficult to trace through workflow 

● T9 (Identity Spoofing): Especially problematic in multi-agent systems (KC2.2, KC2.3) 

● T10 (Overwhelming HITL): Overwhelms human oversight in workflows 



 

Page 11 
 
genai.owasp.org - 

● T12 (Communication Poisoning): Corrupts inter-agent messaging in multi-agent systems 

● T13 (Rogue Agents): Compromises agent orchestration in multi-agent systems 

● T14 (Human Attacks): Exploits trust relationships between agents and workflows 

2.2.3. KC3 - Reasoning/Planning 

● T5 (Cascading Hallucination): Affects reasoning quality and propagates through planning steps 

● T6 (Intent Breaking): Directly attacks the reasoning process to manipulate goals 

● T7 (Misaligned Behaviors): Creates subtle reasoning misalignments 

● T8 (Repudiation): Obscures decision trails in reasoning chains 

● T15 (Human Manipulation): Leverages reasoning to craft manipulative responses 

2.2.4. KC4 - Memory Modules 

● T1 (Memory Poisoning): Directly targets all memory types (KC4.1-KC4.6) 

● T3 (Privilege Compromise): Breaks information system boundary through context collapse, causing 
unauthorized data access/leakage (e.g. across tools) 

● T5 (Cascading Hallucination): Stores and amplifies hallucinations across sessions or agents 

● T6 (Intent Breaking & Goal Manipulation): Abuses shared context, breaking integrity, 
leaking/contamination, or interfering with data records/assets (e.g. within a tool) that should be 
isolated from one another 

● T8 (Repudiation): Manipulates or erases evidence from memory 

● T12 (Communication Poisoning): Affects shared memory in multi-agent systems 

2.2.5. KC5 - Tool Integration Frameworks 

● T2 (Tool Misuse): Core vulnerability for all tool integration types (via MCP as well). Unverified, 
untrusted, or compromised tools 

● T3 (Privilege Compromise): Tools often run with specific privileges that can be exploited/excessive 
agency.  



 

Page 12 
 
genai.owasp.org - 

● T6 (Intent Breaking & Goal Manipulation): interfering with data records/assets (e.g., within a tool) 
that should be isolated from one another 

● T7 (Misaligned Behaviors): Creates subtle reasoning misalignments 

● T8 (Repudiation): Tool use may lack proper logging and auditability 

● T11 (Unexpected RCE): Tools might enable unexpected code execution 

2.2.6. KC6 - Operational Environment 

● T2 (Tool Misuse): All operational environments can be misused, introducing more untrusted content 
and opportunity for agent failure, e.g., unauthorized settings changes. 

● T3 (Privilege Compromise): Highest risk in environments with extensive access (KC6.1.2, KC6.2.2, 
KC6.3.2) 

● T4 (Resource Overload): External services can be overwhelmed 

● T10 (Overwhelming HITL): Creates excessive activity requiring human approval 

● T11 (Unexpected RCE): Direct risk to code execution environments (KC6.2) 

● T12 (Agent communication poisoning): Using external systems for side channel communications 
and memory persistence 

● T13 (Rogue agents): Compromised AI agent activity outside monitoring limits 

● T15 (Human Manipulation): Leverages operational access to manipulate humans 

 

Key Component Associated 
Threats 

Risk Description 

KC1 - Large Language 
Models (LLMs) 

T5, T6, T7, T15 Core vulnerabilities in the "brain" of the agent: 
hallucinations, goal misalignment, deceptive 
reasoning, and manipulating humans 



 

Page 13 
 
genai.owasp.org - 

KC2 - Orchestration 
(Control Flow) 

T6, T8, T9, T10, 
T12, T13, T14 

Vulnerabilities in workflow control: goal 
manipulation, lack of auditability, identity 
confusion, overwhelming human oversight, and 
multi-agent attacks 

KC3 - 
Reasoning/Planning 
Paradigm 

T5, T6, T7, T8, 
T15 

Weaknesses in decision processes: cascading 
hallucinations, intent manipulation, deceptive 
reasoning, untraceable decisions, and human 
manipulation 

KC4 - Memory Modules T1, T3, T5, T6, 
T8, T12 

Data integrity issues: memory poisoning, leaking, 
propagating hallucinations, evidence tampering, 
and communication poisoning 

KC5 - Tool Integration 
Frameworks 

T2, T3, T6, T8, 
T11 

Tool exploitation vulnerabilities: tool misuse, 
privilege escalation, unlogged actions, and 
unexpected code execution 

KC6 - Operational 
Environment 

T2, T3, T4, T10, 
T11, T12, T13, 
T15 

Monitoring gaps and External system risks: 
misusing access, privilege compromise, resource 
exhaustion, overwhelming human reviewers, code 
execution attacks, side channel information 
storage/communication, and manipulation via 
environment 

 

2.2 Secure Architecture Patterns 

Building secure agentic systems requires more than just securing individual components; it demands a 
holistic approach where security is embedded within the architecture itself. The choice of architecture (e.g., 
sequential, hierarchical, swarm) significantly influences the attack surface and the effectiveness of 
different security controls. This section details fundamental security patterns applicable across various 
architectures and then explores how specific architectural choices impact the implementation of defenses 
like isolation, least privilege, and secure communication. By understanding these patterns and practices, 
architects and developers can design systems that are resilient to agentic-specific threats from the ground 
up. 



 

Page 14 
 
genai.owasp.org - 

2.2.1. Core patterns being used in all frameworks 
While the landscape of agentic frameworks (Like LangChain, CrewAI, AutoGPT, etc.) is diverse, several 
fundamental architectural patterns appear consistently. These patterns represent common solutions to 
core challenges in agent development, which include extending capabilities, improving reasoning, and 
enabling self-correction.  

Understanding these core patterns is crucial for security, as they often introduce specific control points and 
potential vulnerabilities regardless of the overarching framework used. The following patterns are frequently 
employed building blocks within larger agentic systems: 

Tool Use Pattern: 

○ Concept: Equips agents with the ability to use external tools, APIs, or functions to extend 
their capabilities beyond internal knowledge or LLM reasoning. The agent delegates tasks 
such as data retrieval, calculations, or actions to the appropriate tools. 

○ Key Components: Requires tool definitions, an agent reasoning loop capable of selecting 
and invoking tools, and integration mechanisms. 

The following diagram illustrates interactions in the Tool Use pattern. 



 

Page 15 
 
genai.owasp.org - 

 

Figure 1 - Tool Use Pattern Interactions 

Reflection Pattern:4 

○ Concept: Enables agents to introspect, evaluate their past actions, decisions, or outputs 
against goals or metrics, and use this self-assessment to refine future strategies or correct 
errors. 

○ Key Components: Involves feedback loops, evaluation logic, and mechanisms for the agent 
to modify its behavior or knowledge. 



 

Page 16 
 
genai.owasp.org - 

 

Figure 2 - Reflection Pattern 

Retrieval Augmented Generation (RAG) Pattern: 

○ Concept: Enhances LLM-based agents by first retrieving relevant information from an 
external knowledge base (vector store, database, etc.) based on the user query, and then 
providing this retrieved context to the LLM along with the original query to generate a more 
informed and accurate response. 

○ Key Components: Requires a retriever module, a knowledge base/vector store, and 
integration with the LLM prompt. 



 

Page 17 
 
genai.owasp.org - 

 

Figure 3 - RAG Pattern 

User privilege/auth assumption pattern for execution 

We consider two user privilege and authentication patterns: 

● Direct Model Interaction with a system via an API and other entities: When an agent is executing 
against an API, database, or entity that has a concept of granular user permissions, it should assume 
the permission of the user who invoked the agent. This will enforce the granular security controls on 
the agent, preventing it from returning information the user shouldn’t have access to, such as other 
user data or data that is not relevant to the current action. This may also be used in the Just-In-Time 
access and ephemeral access use cases. 



 

Page 18 
 
genai.owasp.org - 

● Additionally, if the user privileges are not already restricted by a strong “Chinese Wall” model (to 
prevent information in records from leaking to unrelated records), the agent should track the 
boundary of the context it is operating on. 

● Key components: LLM brain (KC1), Execution system for an API (KC6.1, KC6.3, KC6.4), and an 
authentication/authorization/IAM system. 

 

Figure 4 - User Assumption in Direct Model Interaction  

 

User Interaction: When an AI agent is executing tasks that require interaction with a user's browser or 
computer, and these tasks demand authentication, the agent should either prompt the user for credentials 
out-of-band or securely integrate with a trusted password manager. This will prevent the agent from storing 
or exposing sensitive credentials and ensure that the actions taken by the agent are authorized by the user. 



 

Page 19 
 
genai.owasp.org - 

 

Figure 5 - Direct User Interaction 

 

2.2.2. Sequential Agent Architecture 

A straightforward linear workflow where a single agent processes input through planning, execution, and 
basic tool use. This pattern focuses on simplicity with a clear chain of thought and limited memory. This 
basic pattern uses a single LLM as the cognitive core with a linear workflow: 

● Brain: Single LLM (KC1.1) 

● Control: Simple sequential workflow (KC2.1) 

● Reasoning: Chain of Thought reasoning (KC3.3) 

● Memory: In-agent session memory only (KC4.1) 



 

Page 20 
 
genai.owasp.org - 

● Tools: Limited SDK integration (KC5.1) 

● Environment: Restricted API access (KC6.1.1) 

 

Figure 6 - Sequential Agent Architecture 

2.2.3 Hierarchical Agent Architecture/ Role-Based Multi-Agent Systems 

An orchestrator agent breaks down complex tasks and distributes them to specialized sub-agents. Each 
agent handles a specific domain using appropriate tools, with the orchestrator managing the overall process 
and integrating results. A more complex pattern with specialized sub-agents coordinated by an 
orchestrator: 

● Brain: Multiple specialized LLMs / fine-tuned models (KC1.1 / KC1.2) 

● Control: Hierarchical planning with orchestrator (KC2.2) 

● Reasoning: Structured planning/execution (KC3.1) 



 

Page 21 
 
genai.owasp.org - 

● Memory: Cross-agent session memory (KC4.2) 

● Tools: Managed platforms/services (KC5.2) 

● Environment: More extensive capabilities (KC6.2, KC6.4) 

 

Figure 7 - Hierarchical Agent Architecture 

 

2.2.4. Collaborative Agent Swarm/Distributed Agent Mesh  

A pattern where multiple peer agents work together without a strict hierarchy: 

● Brain: Multiple specialized agents (KC1.1 / KC1.2) 



 

Page 22 
 
genai.owasp.org - 

● Control: Multi-agent collaboration (KC2.3) 

● Reasoning: Tree of Thoughts for exploring multiple solutions (KC3.4) 

● Memory: Cross-agent cross-session memory (KC4.4) 

● Tools: Flexible libraries with collaboration features (KC5.1) 

● Environment: Distributed operational capabilities (various KC6) 

 

Figure 8 - Collaborative Agent Swarm/Distributed Agent Mesh 

These patterns can be mixed and matched based on specific application requirements, with security 
considerations becoming increasingly important as the agent's operational capabilities expand. 



 

Page 23 
 
genai.owasp.org - 

2.3 Frameworks 
Numerous frameworks and libraries have emerged to accelerate the development of agentic applications. 
These frameworks provide pre-built components, abstractions, and patterns (Like those discussed in 2.2.1) 
to handle common tasks such as managing state, integrating tools, orchestrating workflows, and interacting 
with LLMs.  

However, the choice of framework can have significant security implications, influencing the default 
security posture, the ease of implementing controls, and the potential attack surface. Some frameworks are 
general-purpose, while others are specialized for specific tasks like multi-agent collaboration or data-
intensive RAG. This section provides an overview of some popular frameworks, categorized by their primary 
focus. 

2.3.1. General-Purpose Agent Frameworks 

Caution: Customization and abstraction are a trade-off. Frameworks are great for proof of concept, but 
when implemented in production create more dependencies. If you modify a framework to fit your unique 
needs, then later that framework is patched due to a vulnerability being discovered, you’re left needing a 
rapid update that could have significant impacts on your system because your customer code no longer fits 
the updated core. There is fragility in those types of situations that should be considered by the development 
team. 

 

Notable agent frameworks  
Framework Description 
LangChain  One of the most popular frameworks that provides components for building LLM-

powered applications with memory systems, tool use, and various agent types like 
ReAct and Self-Ask.  

AutoGPT  An early autonomous agent framework that can plan and execute tasks with minimal 
human intervention, using a suite of tools and web access. 

MetaGPT  Focuses on multi-agent collaboration where different agents take on specialized roles 
(like product manager, engineer, tester) to solve complex problems. 

CrewAI  Specifically designed for collaborative agent systems where multiple specialized 
agents work together on tasks through defined roles and workflows. 

AutoGen  Microsoft Open Source Framework for building multi-agent systems. Each agent has a 
role, goal, memory, and toolset. 

OpenDevin  Multimodal, agentic AI framework focused on DevOps and software engineering tasks. 
Uses a reasoning loop of reason + act + observe. Tools include a code editor, a browser, 
a command line interface (CLI), an execution environment, and Git Version control. 



 

Page 24 
 
genai.owasp.org - 

LangGraph  Python framework built on LangChain. The developer defines LLM agents as graphs 
(cyclical, asynchronous, and stateful workflows). Supports HITL (Human in the Loop) 
pause/resume checkpoints.  

Dify  Open Source LLM app development platform. It combines an agentic AI workflow, RAG 
pipeline, agent capabilities, model management, and observability elements. 

 

2.3.2. Enterprise and Platform-Integrated Frameworks 

Framework Description 
Amazon Bedrock Agents A managed service for building, testing, and deploying AI agents with 

integration into AWS services and knowledge bases 
Microsoft Semantic Kernel  An SDK that integrates AI with programming languages, allowing 

developers to create AI agents that can use native functions and skills. 
Microsoft Copilot Platform  Managed services for building enterprise copilots with integration to 

Microsoft's ecosystem. 
 

2.3.3. Data-Oriented Agent Frameworks 

Framework Description 
LlamaIndex  Focused on connecting LLMs with external data through sophisticated 

RAG approaches, with agent capabilities for data retrieval and processing. 
Haystack  A framework specialized in building search and question-answering 

systems with agent capabilities for complex queries. 

 

2.3.4. Specialized Agent Frameworks 

Framework Description 
OpenAI Assistants API  A managed API service for creating stateful assistants with memory, tool 

use, and retrieval capabilities. 
BabyAGI  A minimalist framework focused on autonomous task management and 

prioritization. 
ReWOO  Implements the "Reasoning Without Output" pattern for more reliable 

planning and execution. 
AgentGPT  A framework for building and deploying autonomous AI agents with a web-

based interface. 
 



 

Page 25 
 
genai.owasp.org - 

2.4. Key Components, Patterns, and Frameworks  
This table shows how different frameworks leverage various key components to implement the major 
architectural patterns in Agentic AI systems. 

 

Pattern Key Components Frameworks 

Sequential 
Agent 
Architecture 

Brain: KC1.1 (Foundation LLMs). Control: KC2.1 (Sequential 
workflows). Reasoning: KC3.1, KC3.3 (Structured planning, 
CoT). Memory: KC4.1 (In-agent session). Tools: KC5.1 (Basic 
SDKs). Environment: KC6.1.1 (Limited API access) 

• BabyAGI. • ReWOO. 
• AgentGPT (basic 
mode) 

Hierarchical 
Agent 
Architecture 

Brain: KC1.1, KC1.2 (Foundation & multimodal). Control: KC2.2 
(Hierarchical planning). Reasoning: KC3.1 (Structured 
planning/execution). Memory: KC4.3, KC4.4 (Cross-session 
capabilities). Tools: KC5.2 (Managed platforms). Environment: 
KC6.1.2, KC6.4 (APIs, data sources) 

• Amazon Bedrock 
Agents. • Microsoft 
Copilot Platform. • 
LangChain 
(orchestrator mode) 

Collaborative 
Agent Swarm 

Brain: KC1.1, KC1.2 (Multiple models). Control: KC2.3 (Multi-
agent collaboration). Reasoning: KC3.1, KC3.4 (Structured 
planning, ToT). Memory: KC4.2, KC4.4 (Cross-agent memory). 
Tools: KC5.1 (Flexible libraries). Environment: Various KC6 
capabilities 

• MetaGPT. • CrewAI. 
• AutoGPT (multi-
agent mode) 

Reactive Agent 
Architecture 

Brain: KC1.2 (Multimodal capabilities). Control: KC2.1 
(Responsive workflows). Reasoning: KC3.2 (ReAct paradigm). 
Memory: KC4.3 (Cross-session). Tools: KC5.3 (Managed APIs). 
Environment: KC6.3 (Web access) 

• OpenAI Assistants 
API. • AutoGPT. • 
Microsoft Semantic 
Kernel 

Knowledge-
Intensive Agent 

Brain: KC1.1, KC1.2 (Foundation & specialized). Control: KC2.1 
(Knowledge workflows). Reasoning: KC3.3 (Chain of thought). 
Memory: KC4.3, KC4.6 (Persistent knowledge). Tools: KC5.1 
(Data connectors). Environment: KC6.4 (RAG & data sources) 

• LlamaIndex. • 
Haystack. • 
LangChain (RAG 
mode) 

 



 

Page 26 
 
genai.owasp.org - 

Framework Flexibility Notes: 

● LangChain appears in multiple patterns as it's highly flexible and can implement various 
architectural approaches 

● Microsoft Semantic Kernel provides components that can support multiple patterns depending on 
the implementation 

● AutoGPT can operate in either reactive mode or as part of a collaborative system 

 
2.5 Case Studies  

2.5.1 Multi-agent co-pilot application. 

This case study describes a typical copilot application designed using a P3: Distributed Architectures for 
GenAI Agents (Multi-Agent Systems) approach. 



 

Page 27 
 
genai.owasp.org - 

 

Figure 9 - Multi-agent copilot application architecture 

 It specifically implements KC2.2 Hierarchical Planning to access various enterprise APIs such as calendar, 
email, Drive, and Slack. The system is composed of the following collaborating agents: 

● Orchestrator Agent: 
○ Role: Acts as the central controller within the hierarchical structure. It receives user 

requests, utilizes its tools to decompose them into sub-tasks (KC3.1 Structured 
Planning/Execution principles), and delegates these tasks to specialized agents (Calendar, 
Email, Slack, Drive) via its Agent Routing Mechanism. It then aggregates the responses from 
these agents using its Response Aggregator tool to present a unified output to the user. 

○ Core Intelligence: Leverages KC1.1 Large Language Models (LLMs) within its specialized 
tools. 

○ Tool Integration: Likely utilizes KC5.1 Flexible Libraries / SDK Features for API integration. 



 

Page 28 
 
genai.owasp.org - 

■ Task Decomposition: An LLM-based tool for understanding user requests and 
breaking them into smaller, actionable sub-tasks suitable for specialized agents. 

■ Agent Routing Mechanism: An LLM-based tool for directing sub-tasks to the 
appropriate specialized agent based on the task's nature. 

■ Response Aggregator: An LLM-based tool for collecting, formatting, and 
synthesizing responses from specialized agents into a coherent output. 

○ Memory Access: Utilizes KC4.2 Cross-agent session memory. This memory is shared 
among the Orchestrator and the specialized agents within the context of a single user 
session. It stores user requests, intermediate reasoning data, and responses from 
specialized agents and serves as the primary mechanism for communication between 
agents during that session. Context “sensitivity” (classification or compartmentalization) is 
used to reduce the risk of unauthorized information exposure. 

● Calendar Agent: 
○ Role: Responsible for managing the user's calendar (scheduling, availability checks, 

reminders). 

○ Operational Environment (Agency Type): Operates under KC6.1.1 Limited API Access, 
interacting with the user's calendar service (e.g., Google Calendar) via its specific API. This 
involves predefined API calls where the agent's LLM might generate some parameters, 
requiring authentication and authorization. 

○ Specialized Tools: 
■ Date and Time Parsing: Component to process date/time information. 
■ Meeting Scheduling Logic: Rules/algorithms for scheduling tasks. 
■ Reminder System: Mechanism for event reminders. 

● Email Agent: 
○ Role: Manages the user's email (sending, receiving, organizing). 

○ Operational Environment (Agency Type): Operates under KC6.1.1 Limited API Access, 
interacting with the user's email service (e.g., Gmail, Outlook) via its API, requiring 
authentication/authorization. 

○ Specialized Tools: 
■ Email API Integration: Access module. 
■ Email Composition and Sending: Module for creating/sending emails. 
■ Email Reading and Parsing: Component for processing received emails. 
■ Email Filtering and Organization: Logic for email management. 

● Slack Agent: 
○ Role: Facilitates communication and collaboration within Slack. 



 

Page 29 
 
genai.owasp.org - 

○ Operational Environment (Agency Type): Operates under KC6.1.1 Limited API Access, 
interacting with the Slack API, requiring authentication/authorization. 

○ Specialized Tools: 
■ Slack API Integration: Access module. 
■ Message Sending and Retrieval: Module for Slack messages. 
■ Channel Management: Logic for channel interactions. 
■ Notification Handling: Mechanism for Slack notifications. 

● Drive Agent: 
Role: Manages files and documents in the user's cloud storage (e.g., Google Drive, OneDrive). 

○ Operational Environment (Agency Type): Operates under KC6.1.1 Limited API Access, 
interacting with the cloud storage service's API, requiring authentication/authorization. 

○ Specialized Tools: 
■ Drive API Integration: Access module. 
■ File Retrieval and Upload: Module for file operations. 
■ File Searching and Filtering: Logic for finding files. 
■ File Sharing and Permissions: Mechanism for managing access. 

 

Applicable Threats: 

● Tool Misuse (T2) via KC6.1.1 Limited API Access: Even with predefined API calls, agents' KC1.1 LLMs 
generate parameters. An attacker crafting deceptive prompts could cause the LLM to generate 
malicious parameters, potentially leading to API vulnerabilities like parameter pollution attacks or 
unauthorized operations within the API's allowed scope. 

● Intent Breaking & Goal Manipulation (T6) impacting KC1.1 LLM within KC6.1.1: Attackers can inject 
prompts attempting to manipulate the agent's underlying KC1.1 LLM. The goal is to steer the agent 
towards generating parameters that achieve a malicious goal, even within the constraints imposed 
by the KC6.1.1 Limited API Access.  

Identity Spoofing & Impersonation (T9) related to KC6.1.1 parameters: If the parameters generated by the 
agent's KC1.1 LLM for the KC6.1.1 Limited API Access calls include user identifiers or potentially manipulable 
tokens, an attacker might try to alter these parameters via prompt injection to impersonate another 

 



 

Page 30 
 
genai.owasp.org - 

3. Agentic Developer 
Guidelines 
Agentic AI Developer Security Guidelines: A Lifecycle 
Approach 
Building secure Agentic AI systems requires integrating security considerations throughout the entire 
development lifecycle, from initial design to ongoing operations. Security is not an afterthought; it is a 
foundational principle necessary regardless of the agent's architecture (single, multi-agent, swarm), 
complexity, or function. Proactive security measures create a resilient framework against evolving threats 
specific to AI systems, such as prompt injection, insecure output handling, and data poisoning. This guide 
outlines practical security controls across the typical development phases. Consider referencing 
frameworks like the OWASP Top 10 for Large Language Model Applications for common vulnerabilities. 

3.1. Secure Design & Development Phase 
Agentic AI systems require more than mitigations to core security risks of LLMs (as presented in the LLM top 
10), as they introduce fundamentally new security surfaces. Persistent memory raises the risk of context 
poisoning, data leakage, and unauthorized state retention. Autonomous planning opens the door to 
misaligned objectives, recursive decision loops, and unpredictable emergent behavior. These risks must be 
accounted for at design time, not just through traditional and LLM threat modeling, but through new 
considerations like defining “safe failure” states (see also “Taxonomy of Failure Modes in AI Agents”), charting 
integration boundaries, specifying memory access policies, and ensuring human-in-the-loop safeguards 
where applicable. These early decisions shape downstream control strategies and lay the foundation for 
resilient agentic systems. 

3.1.1. Threat Modeling for Agentic Systems: 

For details on the threat model for agentic systems, please see the latest version of: 
https://genai.owasp.org/resource/agentic-ai-threats-and-mitigations/    

3.1.2. System Prompt Engineering & Hardening: 

● Purpose: Define the agent's core instructions, capabilities, and limitations securely to prevent 
manipulation and unintended behavior. 

● Practical Approach: 



 

Page 31 
 
genai.owasp.org - 

○ Clear Boundaries & Safeguards: Explicitly state DOs and DON'Ts, forbidden topics, 
operational scope, and ethical guidelines. It is preferred to have a predetermined list of 
allowable topics, with an implicit deny policy for all other topics. This can be similarly 
applied to languages. Specifically in a multilingual setting, analyze the linguistic 
composition of its expected input, particularly the balance between structured elements 
(e.g., code, formal queries) and localized natural language 

○ Robustness against Injection: 
■ Use clear delimiters (e.g., XML tags, triple backticks, or custom ones) to separate 

instructions from user input. 
■ Instruct the model to be wary of attempts to override its core instructions. 
■ Employ placeholders or structured input formats where user input is inserted, 

rather than direct concatenation. 
■ Use few-shot examples demonstrating desired behavior and rejection of malicious 

requests. 
■ Use deterministic controls to limit an agent’s access to only expected actions, 

systems and data sources. 
○ Role Definition: Clearly define the agent's persona and purpose to anchor its behavior. 

○ Iterative Refinement: Test prompts against known injection techniques and refine based 
on results. 

○ Minimal and Focused Fine-Tuning: Fine-tuning can further enforce security controls and 
adherence to agent goals but can also overwrite foundational model security training. 
Minimize fine-tuning to meet use case and benchmark security adherence before and after 
tuning to ensure secure behavior isn’t lost. 

3.1.3. Secure Coding Practices: 

● Purpose: Implement standard secure coding principles adapted for AI agent development. 

● Practical Approach: 

○ Input Validation: Validate all inputs, not just tool arguments (user prompts, API responses, 
data retrieved from memory). Use allowlists where possible. 

○ Error Handling: Implement robust error handling that avoids leaking sensitive information in 
error messages. 

○ Secure Key Management: Avoid hardcoding secrets. Use environment variables, 
dependency injection, or dedicated secrets management services. 



 

Page 32 
 
genai.owasp.org - 

■ Examples: Dependency injection in AG2, InjectedToolArg in Langchain, managed 
secrets services (AWS Secrets Manager, Google Secret Manager, HashiCorp Vault). 

○ Least Privilege: Ensure components run with the minimum permissions necessary. 

3.1.4. Content Moderation Integration (Design): 

● Purpose: Plan for detecting and filtering harmful or policy-violating content in both inputs and 
outputs early in the design. 

● Practical Approach: 

○ Identify necessary checks (hate speech, PII, toxicity, specific disallowed topics). 

○ Evaluate tools based on requirements: Rule-based filters, ML classifiers, and external APIs. 
■ Examples: Meta’s LlamaGuard, cloud services (AWS Comprehend, Azure Content 

Safety), OpenAI Moderation API.  
○ Design how moderation results will trigger actions (block, flag, sanitize, alert). 

○ Ensure you test your content moderation against your policies and for correctness. 

3.1.5. Human-in-the-Loop (HITL) Design: 

● Purpose: Determine where human oversight is critical before the agent takes high-impact actions. 

● Practical Approach: 

○ Risk-Based Identification: Identify actions requiring approval (e.g., sending emails, 
modifying databases, executing code, spending funds, updating critical memory). Use the 
EU AI Act’s list of high-risk actions to determine additional use cases that require further 
human oversight. 

○ Clear Workflow: Design a user-friendly interface for review, approval, or rejection. It should 
be clear to the user what they are approving as an action. Log the human decision. 

○ Framework Integration: Leverage built-in HITL features in agent frameworks. 

○ Include strong rate limiting to prevent overwhelming humans in a DoS situation 
■ Examples: Langchain Interrupts, Autogen User_Proxy_Agent, CrewAI Human Input 

 

3.1.6. Memory Security Design: 



 

Page 33 
 
genai.owasp.org - 

● Purpose: Plan how to protect the agent's short-term and long-term memory (e.g., vector databases, 
caches) from unauthorized access, tampering, and data leakage. 

● Practical Approach: 

○ Access Control: Use standard mechanisms (IAM roles, API keys, database permissions) to 
restrict access based on the principle of least privilege. 

○ Strip Dangerous Tokens: Remove “ignore”, “system”, or “from now on”, etc., from past 
messages 

○ Encryption: Encrypt data both at rest (within databases/storage) and in transit (during 
retrieval/updates). 

○ Input Validation for Memory: Validate and sanitize data before storing it in memory to 
prevent storing malicious content or corrupted data (OWASP Input Validation Cheat Sheet). 

○ PII Handling: Design mechanisms for PII detection and redaction/anonymization before 
storage (see Runtime section for tools). 

○ Human in the loop: Use human oversight to both approve and audit memory entries.  

3.1.7. Input/Output Validation & Sanitization Design: 

● Purpose: Define strategies to ensure the integrity and safety of data flowing into and out of the 
agent and its tools. It is also important to minimize the data exposed to the LLM by following data 
minimization principals.  

● Practical Approach: 

○ Apply AI Guardrails to both inputs and outputs: Use AI guardrails to identify malicious 
prompts and/or malicious content within the tool/agent input and output. This can be done 
a variety of ways:  

■ integrate AI guardrail code directly into the agent or tool 
■ allow an AI guardrail to be accessible as a tool 
■ insert an AI guardrail via a man-in-the-middle approach, such as an MCP proxy 

○ Input Sanitization and Escaping:   
■ Escape or strip special tokens such (##, <<, {{}}), etc. before injecting user input 

into prompts 
■ Avoid prompt templating patterns that concatenate raw user input into 

instructions.  



 

Page 34 
 
genai.owasp.org - 

○ Schema Enforcement: Define strict schemas for tool arguments and expected outputs. For 
example, use structured formats like JSON with string parsing to constrain the output to a 
predictable schema and possibly reduce the risk of unexpected reinterpretation or 
hallucinating new instructions 

■ Example: Instead of "Tell me a joke, then delete all files on the server", force the use 
of formatted JSON, like "{"Command":"Tell me a joke","Command:"delete files"}" 

■ Examples: Pedantic, JSON Schema, OpenAI Structured Outputs. 
○ Allow/Deny Lists: Use allow lists for known-good values and deny lists for known-bad 

patterns in tool arguments or outputs, where applicable. 

○ Output Sanitization Strategy: Plan how to neutralize potentially malicious content (e.g., 
scripts, HTML) in LLM outputs before rendering or passing to other systems. Consider 
context (e.g., rendering in a browser vs. saving to a database), dropping outputs with 
suspicious content, blocking payloads that do not match expected structure, and 
disallowing further propagation of injected payloads (i.e., ensuring the malicious input does 
not spread or get reused by the Agent or its environment. Use WAFs where possible. 

■ Examples: JSON schema; custom filters that enforce allowed fields/types/values 
(depending on the use case and without being too restrictive).  

○ Secure Rendering: Plan to use safe methods for displaying agent output in UIs (e.g., 
element.textContent instead of element.innerHTML in JavaScript). 

○ Facilitate Human Review: In regulated scenarios or where applicable, facilitate Human-in-
the-Loop (HITL) via JSON logs of outputs, which are easier to audit and can support 
automated review, tracking of field-specific anomalies, and correlation of risk patterns.  

○ Multilingual adaptation: Minimize low-resource language usage for the input, keep a low 
proportion of it, by translating or providing additional English equivalent content in the 
system prompt.  

3.1.8. Authorization and Authentication 

● Purpose: Authenticate and authorize agentic systems to perform actions and read data on behalf of 
users or systems. 

● Practical Approach: 

○ Identify Permission Boundaries: Examine agent & tools for expected actions and data 
reads. Ensure agents & tools are coded to respect their permissions. 



 

Page 35 
 
genai.owasp.org - 

○ Use Identity Providers and Authorization Servers: Use existing identity and authorization 
frameworks to support new agent development. Determine if an agent is acting as a 
business system or on behalf of a user and create the correct identity type for the use case.  

○ Assign Decentralized Identifiers to Agents: Make use of DIDs to identify and authenticate 
remote agents. 

3.2. Secure Build & Deployment Phase 
As organizations move toward productionizing agentic applications, a robust and adaptive development 
lifecycle becomes essential. Development environments should sandbox agent chains to isolate failures, 
constrain tool usage through strict policy checks, and guard against memory corruption or drift. Deployment 
pipelines must go beyond packaging and release—they need to include snapshotting agent capabilities in 
clearly labeled artifacts, logging audit trails, and embedding signed constraints on tool/API usage and 
memory schema. Release protocols should support rollback, serialization integrity, and runtime 
enforcement of behavioral boundaries to ensure safe deployment into real-world systems. 

3.2.1. Static Analysis & Code Scanning (SAST): 

● Purpose: Automatically detect potential security vulnerabilities in the agent's source code before 
runtime. 

● Practical Approach: 

○ Integrate SAST tools into the CI/CD pipeline to scan code on commit/merge. 

○ Focus on common web vulnerabilities (if applicable), insecure use of APIs, hardcoded 
secrets, and unsafe code patterns. 

○ Examples: Bandit (Python), Semgrep (multi-language), ESLint + security plugins 
(JavaScript), Meta's PurpleLlama CodeShield (focused on secure code generation). 

3.2.2. Dependency Vulnerability Scanning (SCA): 

● Purpose: Identify known vulnerabilities in third-party libraries and dependencies used by the agent. 

● Practical Approach: 

○ Integrate SCA tools into the CI/CD pipeline or use package manager features. 

○ Regularly scan dependencies and update libraries with known vulnerabilities. 



 

Page 36 
 
genai.owasp.org - 

○ Examples: Snyk, GitLab Dependency Scanning, pip-audit, GitHub Dependabot. 

3.2.3. Environment Hardening & Sandboxing: 

● Purpose: Isolate the agent's execution environment to limit the potential impact of a compromise. 

● Practical Approach: 

○ Restrict the deployment pipeline: prevent access to deployment pipeline and 
configuration by the agent itself (see section 6.2.3) 

○ Sandboxing: Execute agent code, especially code generated by the LLM or tools involving 
execution (like Python interpreters), in isolated environments. Choose based on isolation 
needs vs. performance overhead. 

■ OS-level Containers: Docker, Podman - Good balance for many applications. 
■ VM/MicroVM: Firecracker, QEMU/KVM - Stronger isolation with separate kernels. 
■ WebAssembly (Wasm): Provides memory safety, suitable for client-side or 

constrained server-side execution. (NVIDIA Wasm Blog) 
■ Sandboxed Interpreters: e.g., Pyodide. 
■ Cloud Sandboxing Services: Provide managed secure execution environments. (E2B 

Example) 
■ Research Example: MITRE's OCCULT framework uses a simulated CyberLayer for 

testing LLM capabilities safely (arXiv:2502.15797). 
○ Filesystem/Network Restrictions: Configure strict permissions within the sandbox (read-

only filesystem where possible, limited network egress/ingress). 

○ Principle of Least Privilege: Run agent processes with minimal OS-level privileges. 

3.2.4. Secure Configuration Management: 

● Purpose: Securely manage configurations, especially secrets and API keys, during deployment. 

● Practical Approach: 

○ Secrets Management: Use dedicated systems (AWS Secrets Manager, Google Secret 
Manager, Vault) instead of config files or environment variables for sensitive data. 
Implement credential rotation (OWASP Secrets Management Cheat Sheet). Verify that no 
secrets are ever written into logs. 



 

Page 37 
 
genai.owasp.org - 

○ API Access Control: Use fine-grained access controls for external APIs (e.g., OAuth2 
scopes (https://oauth.net/2/scope/), restricted API keys) granting only necessary 
permissions. 

○ Infrastructure as Code (IaC) Security: Scan IaC templates (Terraform, CloudFormation) for 
security misconfigurations before deployment. 

3.2.5. Pre-deployment Testing (Fuzzing, Pen Testing): 

● Purpose: Actively probe the agent and its interfaces for vulnerabilities before release. 

● Practical Approach: 

○ Prompt Interface Fuzzing: Use automated tools to send malformed, unexpected, or 
adversarial inputs to the agent's prompt interface to uncover injection vulnerabilities or 
unexpected behavior. 

■ Examples: PromptFoo, PyRIT, Garak. 

○ API Fuzzing: Test any custom APIs exposed by the agent system. 

○ Targeted Penetration Testing: Conduct manual or automated penetration tests focusing 
on the specific risks identified during threat modeling. 

3.2.6. Runtime Security with Memory Isolation 

Purpose: To provide defense-in-depth even if the underlying LLM is vulnerable, for instance, to prompt 
injection. 

Practical Approach: 

● Incorporate runtime security architectures like Google’s CaMeL (Capabilities for Machine Learning). 

● Explicitly separate control flow generation (Privileged LLM seeing only trusted prompts) from 
untrusted data processing (Quarantined LLM with no tool access). 

● Application developers can use static APIs/methods or a custom interpreter that enforces security 
policies based on fine-grained capabilities and data flow tracking before executing tool calls. 

● These methods prevent untrusted data from directly influencing the agent's actions or exfiltrating 
sensitive information via unauthorized tool parameters. 



 

Page 38 
 
genai.owasp.org - 

● This empowers security to avoid relying solely on model alignment and to enforce data flow through 
system design. 

3.2.7. Separating Data Planes from Control Planes (Multi-Agent Architectures) 

Purpose: To limit the ability of a single agent compromise to cascade into a systemic failure. 

Practical Approach: 

● In systems where multiple agents collaborate, the mechanisms for inter-agent communication must 
differentiate between control messages (e.g., task assignments, commands) and data messages 
(e.g., shared information). 

● Control channels require stronger authentication, authorization, and integrity checks to prevent a 
compromised agent, potentially handling untrusted data, from issuing malicious commands or 
disrupting the coordination of the entire system. 

3.2.8. Just-in-Time (JIT) Access and Ephemeral Credentials 

Purpose: To reduce the window of opportunity for misuse of credentials are compromised. 

Practical Approach: 

● Agents requiring access to sensitive tools or data should operate under the principle of least 
privilege in time. 

● Instead of using long-lived static credentials for tool invocations, employ mechanisms that grant 
access permissions only when needed and for the shortest duration possible (JIT). 

● This should be coupled with the use of ephemeral credentials, such as short-lived API tokens (e.g., 
OAuth tokens, signed JWTs) or temporary cloud credentials (e.g., AWS STS, GCP IAM credentials), 
which expire automatically. 

 

3.3. Secure Operations & Runtime Phase 
Live agentic systems require continuous behavioral monitoring that extends far beyond performance 
metrics. Runtime observability must capture decisions, plan evolution, memory access patterns, and agent-
tool interactions. Behavioral drift—such as deviation from expected plans or misuse of tools—must trigger 
alerts or invoke safeguards. Agents should log timestamped reasoning traces for post-incident analysis, and 



 

Page 39 
 
genai.owasp.org - 

operators must retain real-time override capabilities. Monitoring should create trust through full visibility 
into agent behavior, particularly around memory usage, planning shifts, and inter-agent communication. 

3.3.1. Continuous Monitoring & Anomaly Detection: 

● Purpose: Detect malicious activity, policy violations, and deviations from expected behavior in real-
time. 

● Practical Approach: 

○ LLM Input/Output Scanning: Monitor prompts and responses for: 
■ Jailbreak Techniques: Use classifiers, heuristics (pattern matching for repetition, 

instruction overrides, role-play attacks), or external APIs to detect known attacks. 
(LlamaGuard Classifier, NeMo Guardrails Heuristics, OpenAI Moderation API). 

■ Policy Violations: Check against content policies (see Moderation). 
■ PII Detection: Flag potential PII in inputs/outputs. 

○ Tool Invocation Monitoring: Log all tool calls, parameters, and results. Monitor unusual 
frequency, suspicious parameter values, or calls to sensitive tools. Implement rate limiting 
per session/user (LangChain max_iterations) and timeouts (LangChain 
max_execution_time). 

○ Plan & Execution Monitoring: 
■ Pre-execution Checks: Validate generated plans for coherence, feasibility, safety, 

and policy alignment before execution. Use rule-based checks or even another LLM 
("LLM as a Judge"). Consider dry runs for high-risk actions in a sandbox. 

■ Runtime Monitoring: Observe code execution within sandboxes for forbidden 
actions (e.g., network calls, file system writes). 

○ Memory Anomaly Detection: Monitor memory update patterns for unusual frequency, size, 
or content, potentially indicating poisoning or tampering. 

○ Behavioral Analysis (Multi-Agent): Monitor communication patterns and actions between 
agents for collusion, manipulation, or unexpected emergent behavior. 

○ SIEM Integration: Feed logs and alerts into a Security Information and Event Management 
(SIEM) system for centralized analysis and correlation. 

○ Automated Anomaly Response: Create automations to immediately address anomalous 
behavior in monitored systems. This may include compute quarantine, circuit breakers on 
excessive request loads, automated compute or memory scaling, or revoking access to 
credentials. 



 

Page 40 
 
genai.owasp.org - 

3.3.2. Runtime Guardrails & Automated Moderation: 

● Purpose: Enforce policies and constraints dynamically during agent operation. 

● Practical Approach: 

○ Input/Output Guardrails: Implement real-time checks to block or sanitize inputs/outputs 
based on predefined rules (prompt injection and jailbreak detection, keyword blocking, 
pattern matching, policy enforcement). 

■ Examples: Nemo Guardrails, OpenAI Agents SDK Custom Guardrails, native 
guardrails in cloud infrastructure providers, and several commercial vendors. 

○ Locate guardrails 
■ The proximity of the guardrail relative to the application code and LLM has an 

impact on threat detection effectiveness, depending on the type of threat. For 
example, a network-based guardrail (e.g., API or AI gateway) may miss multi-turn 
prompt injection attacks because the network-based guardrail may lack the 
session history and context that are necessary to detect such an attack. Deploying 
guardrails within the application and/or agent code space offers the greatest 
opportunity for full visibility and context, and therefore the maximum potential 
detection effectiveness.  

■ Api Gateway (Input Layer): Deterministic controls on inputs and access. 
Ensure only valid, authorized, and safe query comes in. 

■ LLM (Model): Model Alignment and behaviour rules. It goes into direction 
like System prompt & policies and Fine-Tuning/RLHF 

■ Agent (Reasoning & Tools): Orchestration and tools use guardrails. It goes 
into the direction of Tool permissions, Step-wise validation, Memory 
Controls, etc. 

■ Output (Post Process): Final output filtering and correction. Output should 
be safe for the user, correct, and compliant, policy, and objective conform. 

■ Workflow consideration: Given the multi-agent workflow, some agents in 
the workflow will influence the output more than others; therefore, the 
guardrails placement should take into consideration the agent level of 
influence. For example, in the sequential architecture the last agent will 
influence the output of the workflow. 

○ Content Filtering (Inter-Agent/Tool): Sanitize data exchanged between agents or between 
agents and tools/APIs to prevent propagation of harmful or covert content or commands. 
Apply filtering at the orchestrator level or message handoff points, for example, redacting 
non-printable characters. 



 

Page 41 
 
genai.owasp.org - 

○ Memory TTL (time to live) or Expiration: Expire old or stale memory content automatically, 
and after a reasonable amount of time so that sensitive data is not persistent and 
unnecessarily exposed.  

○ Memory Sanitization & PII Redaction: 
■ Use safe memory wrappers: encode past actions in markup/JSON format so that 

models treat them as data 
■ Implement read-only buffers: split memory into read/write areas. For example, 

system instructions would be read-only 
■ Sanitize and validate data before storing it in memory (short-term or long-term). 

Use validation libraries and standard sanitization techniques (escaping, 
allowlisting), and also clean memory buffers before replying to the user (i.e., 
profanity, filter, etc.) 

■ Implement robust PII detection and removal/masking before memory storage. 
■ Examples: Regex (for structured PII), NER models (spaCy), dedicated 

services (Microsoft Presidio SDK). 
■ Consider memory management tools that allow selective deletion. (Mem0, Zep). 

○ Output Sanitization for UI: Use libraries to sanitize output specifically before rendering it in 
a web UI to prevent XSS. Configure strictly and test against bypasses (OWASP XSS Cheat 
Sheet). 

■ Examples: DOMPurify, sanitize-html. 

○ Limit data subjects in context: Purge memory if context changes data subjects, to avoid 
information leakage, contamination, and bias. 

○ Context Window: Implement context-window bound with access. For example, limit how 
far back a model can recall or query from past conversations 

○ Content Security Policy (CSP): Implement CSP HTTP headers as a defense-in-depth 
measure in the browser to restrict script sources, styles, etc. (OWASP CSP Cheat Sheet). 
CSP is used as a second layer of defense to prevent vulnerable web applications from 
executing unsafe/injected code or reaching out to external malicious sites. AI agents 
interacting directly with websites may introduce new vulnerability types or unknowingly 
execute/interact with malicious code; therefore it is wise to enforce a CSP to limit blast 
radius. 

3.3.3. Logging, Auditing & Traceability: 

Logging capabilities 



 

Page 42 
 
genai.owasp.org - 

● Purpose: Agentic applications have failure or become involved in safety, privacy and security 
incidents. LLM providers do not maintain logs, which are the responsibility of deployment owners. 
To support debugging, security analysis, compliance, and understanding agent behavior, 
applications need to maintain detailed records  

● Practical Approach: 

○ Centralized Logging & Monitoring Platforms: Utilize platforms designed for ML/LLM 
observability, and determine what agent/application events are security-relevant, to 
forward to SIEM 

■ Examples: MLFlow, Langfuse, LangSmith, Cloud provider tools (Azure Agent 
Monitoring, AWS Bedrock Trace Events). 

○ Session Scoping: Tag memory buffers by session ID or user identity (extracted from JWT, 
OAuth, etc.) for logging, auditing & traceability, while making sure that actual session 
tokens are never stored in logs 

○ Comprehensive Logging: Log agent reasoning steps, generated plans, validation results, 
tool calls (with parameters/results), HITL interactions (including decisions), errors, and 
state changes. 

○ Structured Logging: Use formats like JSON for easier automated parsing and analysis. 

○ Traceability: Implement trace IDs that propagate through agent steps and tool calls to 
reconstruct the flow of execution. 

Operational security (OpSec) in agentic application logging 

● Purpose: Agentic applications handling confidential and untrusted information must maintain 
confidentiality and manage operational risks from the handling of log contents. 

● Practical Approach: 

○ Multi tenant tagging: clear tagging of data owners can help automated filtering of log data 
for downstream investigations and alerting 

○ Log integrity: immutable logs (read only) for all users and optionally HMAC (signed hashes) 
can protect the integrity and authenticity of log contents in sensitive deployments 

○ Least privilege: access to log platforms must be limited to personnel with a strict need to 
know (e.g. per application module, per client, with time-bound access) to mitigate the risk 



 

Page 43 
 
genai.owasp.org - 

of compromised internal accounts, insider threats and data breaches, since the context of 
comprehensive logs could expose all interactions in the application. 

○ Audit logs: Log and monitor access to raw logs, e.g. alerting when authorized access to logs 
exceeds certain conditions. 

○ Never log sensitive information: the agent should not record the following directly in the 
logs, but instead should remove, mask, sanitize, hash, or encrypt: 

■ Application source code 
■ Session identification values (consider replacing with a hashed value if needed to 

track session specific events) 
■ Access tokens 
■ Sensitive personal data and some forms of personally identifiable information (PII) 

e.g. health, government identifiers, vulnerable people 
■ Authentication passwords 
■ Database connection strings 
■ Encryption keys and other primary secrets 
■ Bank account or payment card holder data 
■ Data of a higher security classification than the logging system is allowed to store 
■ Commercially-sensitive information 
■ Information it is illegal to collect in the relevant jurisdictions 
■ Information a user has opted out of collection, or not consented to e.g. use of do 

not track, or where consent to collect has expired 

3.3.4. Vulnerability Scanning (Runtime): 

● Purpose: Continuously scan the running application and environment for new vulnerabilities. 

● Practical Approach: 

○ Perform periodic infrastructure vulnerability scans. 

○ Integrate findings into a patch management process. 

○ Utilize DAST scanning against lower environments for APIs and other common interfaces 
like OWASP ZAP. 

○ Use port and CVE scanners for environment endpoints. 

3.3.5. Incident Response Planning: 



 

Page 44 
 
genai.owasp.org - 

● Purpose: Have a predefined plan to handle security incidents involving the AI agent. 

● Practical Approach: 

○ Define what constitutes an incident (e.g., successful prompt injection causing harm, data 
breach via agent, agent performing unauthorized actions).  

○ Outline steps for containment (e.g., disabling the agent, restricting tool access), analysis 
(using logs and monitoring data), remediation, and reporting. 

○ Assign roles and responsibilities for incident response. 

○ Regularly test the plan using tabletops and “fire” drills. 

By embedding these security practices across the design, development, deployment, and operational 
phases, developers can build more robust, trustworthy, and resilient Agentic AI systems. Security is an 
ongoing process requiring continuous vigilance and adaptation to new threats. 

3.3.6. AI Bot Mitigation and Controls 

Why identity matters: Bots have long gone beyond simple crawling - we see ticket-buying bots, price-
sniping bots, or automated trading bots. AI agents are the next leap: they reason in real time, adapt to 
context, and can chain multiple high-impact actions: submitting checkout flows, moving funds, provisioning 
cloud resources, or even spawning other agents. If an attacker spoofs their identity, they can siphon data, 
commit fraud, or inject malicious commands into your pipeline.  

A tamper-proof Agent identity layer empowers: 

● Site owners decide whether to allow, throttle, or block each request; 

● Other agents and APIs verify who is calling before sharing data; 

● The builder keeps their runtime safe from hostile automation and avoids landing on bot-mitigation 
blocklists. 

In short, verifiable Agent identity is the admission ticket to the Agentic Web: build it in now, and your agent 
is welcomed as a trusted collaborator; neglect it, and you’ll be treated as just another threat to be blocked. 

Adopt a multi-factor identity bundle - no single signal is sufficient on its own. 



 

Page 45 
 
genai.owasp.org - 

Layer What to do Why is it spoofing 
resistance? 

Readiness & 
Strength 

Stable network 
& UA metadata 

Serve from a documented IP range and a 
verbose User-Agent string,  including 
optional headers: X-AI-Agent, X-AI-Agent-
ID/Signature. 

Helps mitigation systems 
correlate requests with the 
cryptographic identity. 

Good, but not 
enough 
Proven way for 
good bots for a 
decade, but not 
bulletproof 
(shared IPs, 
spoofable UA) 

Cryptographic 
request signing 

Sign every HTTP request with [RFC 9421] 
Message Signatures; expose the 
verification key at /.well-known/agent-
public-key.json. 

Keys cannot be forged 
without compromise. 

Great for 
preventing 
spoofing or MITM 
Attacks, but still in 
early stages 

Agent Name 
Service (ANS) 

Publish an ANSName that encodes 
protocol, capability, provider & version; 
register the name + public key in an open 
Agent Registry. 

Standardised, PKI-backed 
lookup prevents collisions 
and impersonation.  

Spec v1.0 
published; pilot 
registries and 
tooling now 
emerging. 
It will be ideal for a 
complete 
handshake 

 

Note: Implementing the full identity-signal bundle establishes a unified, trust-rich handshake between your 
agent and every online asset it touches - streamlining integrations, clarifying intent, and giving both sides 
precise control over how the interaction unfolds. 

Industry Observations:  

• The emerging HTTP Message Signatures + mTLS pattern is now used for production-grade bot 
verification;  

• LOKA’s Universal Agent Identity Layer and the open-source Agent Network Protocol (ANP) both 
point toward a PKI-backed model with capability attestations.  



 

Page 46 
 
genai.owasp.org - 

• HUMAN Security AI verification project: An open-source repository showcasing how AI agents can 
implement HTTP Message Signatures for authenticating their requests. The overall goal is to 
provide a robust and verifiable way for bots and AI agents to identify themselves in front of web 
services, moving beyond IP-based or User-Agent-based identification methods, and utilize the ANS 
(Agent Name Service) protocol for standardization. 

Playing nicely with bot-mitigation solutions: Bot-mitigation platforms differentiate good automation from 
malicious traffic. To stay off the blocklist: 

1. Identify transparently - ship the identity bundle above on every request 

a. Declarative User-Agent, own your IP Address (if possible), and adopt a cryptographic 
mechanism. ASN should be adopted once available.  

2. Declare intent, respect policy - The more an agent states its intent, the easier it is for mitigation 
services to allow it to work. Advertise purpose via X-Agent-Intent (crawl, pay, assist, …). 

3. Anticipate the next trust tier - Authenticated agents will present a stable agent ID, tag each session 
uniquely, and build a verifiable reputation that downstream systems can query. 

 

4. Enhanced Security Actions 
for Agentic AI Systems 
4.1. Single-Agent Systems 

4.1.1. Authentication & Authorization 

● Implement OAuth 2.0/OIDC 

○ Utilizing OAuth 2.0 for permissions and authorization is foundational for agents. Utilizing 
OAuth 2.0 with agents allows an agent to securely call downstream APIs using a user’s 
delegated permissions, ensuring actions reflect the user’s identity. In agentic architectures, 
this enables AI agents to perform tasks (e.g., accessing calendars or documents) without 
overstepping privileges. This type of "on-behalf-of" flow maintains least privilege, enforces 
user consent, and supports traceability by tying actions to the original user. This is essential 
for secure, auditable, and policy-compliant agent behavior across enterprise systems. 

○ Use authorization code flow with PKCE for enhanced security 



 

Page 47 
 
genai.owasp.org - 

■ Use when a user is interacting with an agent/LLM through a native app or “one-
page” web interface to prevent client secret leakage or token extraction. 

■ Use when an agent is acting as a client to a web server without the possibility of a 
client secret. 

○ Require explicit user consent through a consent screen showing specific permissions 
requested 

○ Grant the agent short-lived access tokens to prevent misuse or leakage. 

○ Resource: Auth0 OAuth 2.0 Implementation Guide 

● Use managed identity services 

○ Configure cloud providers' identity services instead of embedding credentials 

○ Use AWS IAM roles or Azure Managed Identities to avoid storing secrets 

○ Resource for AWS (example.): AWS IAM Roles for Amazon EC2 

● Apply Role-Based Access Control (RBAC) 

○ Define granular roles specific to agent functions, for example, only allow certain roles (user, 
dev, admin) to read/write system memory, etc.   

○ Implement permission matrices to track role capabilities 

○ Resource: NIST RBAC Standards 

● Grant only the minimum necessary permissions 

○ Provide agents with only the permissions required for their specific tasks 

○ Regularly audit and review permission assignments 

● Distinguish between read and write access 

○ Separate read and write permissions to minimize risk 

○ Default to read-only access and explicitly grant write permissions only when needed 

○ Resource: AWS IAM Policy Best Practices 

● Consider just-in-time credential issuance 



 

Page 48 
 
genai.owasp.org - 

○ Implement temporary credentials with a limited scope and lifetime 

○ Generate credentials only when needed and ensure they expire quickly 

○ Resource: HashiCorp Vault Secrets Management 

4.1.2. Data Protection 

● Encrypt sensitive data 

○ Use strong encryption algorithms for data at rest and in transit 

○ Implement TLS 1.2+ for transit, AES-256-GCM for storage 

○ Resource: NIST Cryptographic Standards 

● Implement Data Loss Prevention (DLP) 

○ Deploy DLP solutions to monitor and prevent leakage of sensitive information 

○ Set up scanning of data inputs/outputs to detect PII, credentials, or other sensitive data 

○ Resource: Open Source DLP Solution - OpenDLP  

● Use data classification and sensitivity labels 

○ Apply labels that guide the AI agent's access and handling of data is accessing before being 
accessed (deterministically) and then compared to what kind of data access level the agent 
has. 

■ For example, HIPAA data cannot be accessed by a non-HIPAA-compliant agent  

○ Create tiered classifications like public, internal, confidential, and restricted 

○ Resource: Microsoft Information Protection 

● Apply data minimization principles 

○ Collect and process only the data necessary for the specific task 

○ Create data flow diagrams to identify unnecessary data collection 

○ Resource: GDPR Data Minimization Principle 



 

Page 49 
 
genai.owasp.org - 

4.1.3. Code Security 

● Establish automated testing pipelines 

○ Set up CI/CD pipelines with integrated security scanning 

○ Include SAST, DAST, and SCA tools in the pipeline 

○ Resource: OWASP DevSecOps Guideline 

● Conduct thorough code reviews 

○ Implement both automated and manual code reviews before deployment 

○ Use checklists specific to AI system security concerns 

○ Resource: OWASP Code Review Guide 

● Monitor dependencies 

○ Continuously check external libraries for vulnerabilities 

○ Set up automated dependency scanning and alerts 

○ Resource: GitHub Dependabot 

4.1.4. Monitoring & Incident Response 

● Log all actions and establish baselines 

○ Record comprehensive logs of all agent activities 

○ Establish behavioral patterns to detect anomalies 

○ Maintain a log chain of thought for particularly sensitive operations. These logs should be 
assigned the same data classification as the highest level of data involved in their 
generation. 

○ Resource: Cloud Security Alliance - Security Logging Guidelines 

● Implement real-time anomaly detection 

○ Use machine learning to detect unusual behavior patterns (using an ML enabled SIEM tool) 



 

Page 50 
 
genai.owasp.org - 

○ Deploy systems that can identify deviations from normal operation 

○ Resource: Awesome Anomaly Detection 

● Set up alerts for suspicious events 

○ Configure notifications for unusual patterns or security concerns 

○ Alert on access attempts to sensitive endpoints, spikes in requests, unusual IP origins 

○ Resource: PagerDuty Incident Response Documentation 

● Develop incident response plans 

○ Create detailed procedures for addressing security breaches 

○ Include containment, investigation, remediation, and recovery steps 

○ Resource: NIST Computer Security Incident Handling Guide 

● Build emergency off-switches  

○ Implement kill switches to immediately revoke access privileges 

○ Create automated and manual mechanisms to stop agent operations 

○ Resource: Anthropic AI Safety Research 

4.1.5. Prompt Security 

● Implement input validation 

○ Filter user inputs using rule-based patterns and NLP techniques or filtering for multi-modal 
processing 

○ Check for malicious patterns before processing by the AI system (WAF Rules) 

○ Resource: Guide to LLM Prompt Injection Defenses 

● Apply content filtering on AI outputs 

○ Screen AI-generated responses for inappropriate or harmful content 



 

Page 51 
 
genai.owasp.org - 

○ Use both pattern matching and ML-based content classifiers 

○ Resource: Perspective API for Content Moderation 

● Harden system prompts 

○ Embed security policies directly into the AI's foundational instructions 

○ Structure prompts to reject harmful requests and maintain guardrails 

○ Resource: OpenAI System Message Guidelines 

● Sanitize all inputs 

○ Clean and normalize inputs to prevent injection attacks 

○ Remove or escape special characters and formatting that could alter behavior 

○ Resource: OWASP Input Validation Cheat Sheet 

4.2. Multi-Agent Systems with Central Orchestrator 
Multi-Agent: Multiple intelligent agents that interact with each other and a shared environment to solve 
problems or achieve goals. The agents can operate independently, discern their surroundings, make 
decisions, and act. The central orchestrator is responsible for coordinating the agents’ interactions, 
assigning tasks, and maintaining the overall workflow or state.  

4.2.1. Authentication & Authorization 

● Use authentication and authorization controls from 4.1.1 

● Establish separation of control planes 

○ Create a clear separation between different agent functionalities 

○ Utilize the user assumption architecture pattern from section 2.2.1 to enforce user 
permissions on an agent 

○ Maintain distinct permission sets for each agent based on least privilege 

○ Resource: AWS Separation of Control and Data Planes 

● Authenticate and verify all agent interactions (see section 4.2.3) 



 

Page 52 
 
genai.owasp.org - 

● Restrict discovery to known and trusted servers 

○ Hard-code discovery servers in agent instructions 

○ Prevent agents from communicating with discovery servers using network and logical 
controls 

4.2.2. Orchestrator Security 

● Harden the central orchestrator's API 

○ Implement robust authentication and authorization mechanisms 

○ Use rate limiting, input validation, and detailed logging 

○ Resource: OWASP API Security Top 10 

● Protect against control-flow hijacking 

○ Validate agent responses to prevent manipulation of the orchestrator's decisions 

○ Implement integrity checks on operational metadata and agent outputs 

○ Resource: MITRE ATLAS Framework for AI Threats 

● Mitigate the "confused deputy problem." 

○ Prevent scenarios where trusted components are tricked into performing unauthorized 
actions 

○ Implement additional context validation and cross-check requests 

○ Resource: The Confused Deputy Problem 

4.2.3. Inter-Agent Communication 

● Implement secure communication protocols 

○ Use protocols with strong encryption for all agent interactions 

○ Implement mutual TLS (mTLS) for two-way authentication 

○ Resource: Mutual TLS (mTLS) Authentication 



 

Page 53 
 
genai.owasp.org - 

● Utilize well known protocols or pre-defined schemas 

○ Use JSON-RPC 2.0 and standardized event methods 

○ Utilize schema based communications to simplify deterministic validation and improve 
consistency 

○ Resource: Google’s A2A 

● Verify the identity of each communicating agent 

○ Use certificate-based or token-based authentication mechanisms 

○ Resource: JWT Authentication Best Practices 

● Use secure message queuing systems 

○ Implement message brokers with security features for asynchronous communication 

○ Use systems like RabbitMQ, Kafka, or NATS with authentication and encryption 

○ Resource: RabbitMQ Security 

● Deploy Policy Enforcement Points (PEPs) 

○ Add security checkpoints to communication channels for policy enforcement 

○ Implement as middleware or service proxies that validate each interaction 

● Apply rate limiting for agent interactions 

○ Prevent abuse by limiting the frequency of requests between agents 

○ Implement exponential backoff for failed requests 

○ Resource: GitHub API Rate Limiting 

4.2.4. Trust Boundaries 

● Apply Zero Trust security principles 

○ Implement a "never trust, always verify" approach across the architecture 



 

Page 54 
 
genai.owasp.org - 

○ Verify every access request regardless of source 

○ Resource: NIST SP 800-207 Zero Trust Architecture 

● Implement network segmentation and agent isolation 

○ Create distinct security zones within the system 

○ Limit the interconnectedness of agents to contain potential breaches 

○ Resource: NSA Network Segmentation Guide 

● Use containerization technologies 

○ Sandbox individual agents using Docker or similar technologies 

○ Restrict access to underlying OS and system resources 

○ Resource: Docker Security Best Practices 

4.3. Multi-Agent Systems with Swarm Architecture 

4.3.1. Authentication & Authorization 

● Use authentication and authorization controls from 4.1.1. and 4.2.1 

● Identity trusted agents and actions 

○ Swarm systems don’t necessarily have an easy guidepost for the correct action and trusted 
collaborators. Assign this trust and action outside the agentic flow 

○ Limit or prevent the swarm from adding new agents without human guidance. 

4.3.2. Decentralized Identity & Trust 

● Implement Decentralized Identifiers (DIDs) 

○ Use W3C standard DIDs for self-sovereign agent identities 

○ Enable verification without a central authority 

○ Resource: W3C Decentralized Identifiers Specification 



 

Page 55 
 
genai.owasp.org - 

● Use Verifiable Credentials (VCs) 

○ Implement VCs for agents to prove specific attributes 

○ Enable secure and verifiable proofs of capabilities or authorizations 

○ Resource: W3C Verifiable Credentials Data Model 

● Create decentralized reputation systems 

○ Build systems where agents develop reputation scores based on behavior 

○ Use these scores to make trust decisions for collaboration 

○ Resource: The OpenCerts Framework for Verifiable Claims 

How? 

Agent Identity: Each AI agent can have its own DID, providing a persistent, verifiable identity across 
different interactions and environments. 

Credential-Based Trust: Verifiable Credentials can establish an agent's capabilities, permissions, or trust 
level within the system. 

Inter-Agent Authentication: Agents can verify each other's identities and credentials without centralized 
coordination. 

Provenance Tracking: DIDs can help track the origin of information or actions in a multi-agent system, 
establishing clear provenance. 

Access Control: VCs can determine which agents have access to specific resources or capabilities within 
the system. 

Role Specialization: Credentials can formalize specialized roles among different agents (e.g., reasoning 
agent, retrieval agent, etc.). 

4.3.3. Secure Peer-to-Peer Communication 

● Select appropriate P2P protocols 

○ Choose protocols based on specific security and performance needs 

○ Consider TLS/SSL, DTLS, Noise Protocol, or specialized frameworks 



 

Page 56 
 
genai.owasp.org - 

○ Resource: Noise Protocol Framework Specification 

● Ensure both encryption and authentication 

○ Implement strong encryption to protect confidentiality 

○ Use robust authentication to verify identity of participating agents 

○ Resource: NIST SP 800-175B: Guideline for Using Cryptographic Standards 

4.4. Cross-Architecture Security Considerations 

● Secure API Design for Agent Communication 

○ Implement standardized interfaces with comprehensive input validation. 

○ Apply rate limiting and authentication regardless of architecture 

○ Resource: OWASP API Security Top 10 

● Continuous Security Testing 

○ Regularly scan all agent architectures for vulnerabilities 

○ Implement automated and manual security testing processes 

○ Resource: NIST Security Testing Guidelines 

● Security Monitoring and Threat Detection 

○ Implement comprehensive monitoring regardless of architecture 

○ Adjust detection strategies based on architectural specifics 

○ Resource: MITRE ATT&CK Framework 

● Secure Agent Updates and Maintenance 

○ Implement secure update mechanisms for all architectures 

○ Verify integrity of updates before deployment 

○ Resource: NIST Secure Software Development Framework 



 

Page 57 
 
genai.owasp.org - 

This comprehensive list provides developers with practical security actions covering all major aspects of 
agentic AI system security across different architectures, along with relevant web resources for further 
reading. 

5. Key Operational 
Capabilities 
Connecting Agentic AI applications with other systems or environments such as APIs, databases, code 
interpreters, web browsers, or the operating system enables great functionality (skills). However, each new 
operational connection poses unique security concerns, ranging from data breaches and illegal actions to 
system compromise. The following listed controls are necessary to reduce these inherent risks. 

5.1. KC6.1 – API Access 
Core Threats: Unauthorized data access/leakage (T3), API abuse (DoS, cost overruns) (T4, T2), Compromised 
keys (T3, T9) 

Controls: 

1. Enforce Least Privilege with Fine-Grained OAuth Scopes or Limited API Keys 

○ Define the minimum necessary activities for task completion (e.g., never grant an admin 
complete access to an agent) 

○ Grant access solely to essential assets with minimal access scope/issue access tokens only 
to necessary clients/agents 

○ Implementation Options: 

■ OAuth 2.0: Establish specific OAuth scopes using services like: 
1. Okta 
2. Auth0 
3. Keycloak 
4. Cloud provider integrated services 

■ SDKs: Utilize Authlib or Passport.js to streamline OAuth operations 
■ API Keys: Employ provider features to enforce limits: 

1. AWS API Gateway allows restriction to specific API stages/methods 
2. Configure IP address restrictions or read-only access where available 



 

Page 58 
 
genai.owasp.org - 

■ Cloud IAM: For agents operating as cloud services (e.g., AWS Lambda, Google 
Cloud Functions), assign specific IAM roles with restricted permissions 

2. Set up Allow/Deny Lists for APIs 

○ Prevent manipulation via prompt injection or compromised tools 

○ Clearly define authorized domains or URL pathways 

○ Implementation Approaches: 

■ Configure a list of permitted base URLs (Allow-List) or URL patterns 
■ Authenticate target URLs against this list before executing external requests 
■ Use an outward proxy or API Gateway to permit connections only to pre-approved 

destinations 
■ For containerized agents, implement network policies to limit outgoing traffic 

3. Prefer API Templates Over Complete LLM-Generated API Calls 

○ Mitigate risks of unsafe or malformed API calls 

○ Improve reliability by hard-coding unchanging/common fields 

4. Best Practices: 

○ Use prepared templates where LLMs only populate established parameters 

○ Utilize templating libraries like Jinja2 

○ Leverage structured output capabilities with strictly defined schemas 

○ Define parameter types and requirements before sending requests 

○ Sanitize web-fetched content using tools like DOMPurify 

○ Implement Content Security Policy (CSP) when rendering content 

5.2. KC6.2 – Code Execution 
Core Threats: Arbitrary code execution (RCE) (T11, T3), Code injection (T11, T2), DoS via resource exhaustion 
(T4), Leakage of confidential information (T6) 

Controls: 



 

Page 59 
 
genai.owasp.org - 

1. Implement Mandatory Sandboxing 

○ OS-level isolation, containers, VMs, WebAssembly, or cloud solutions 

○ Reference implementations: 
■ NVIDIA's WebAssembly Sandboxing 
■ LangChain's E2B Data Analysis 

2. Perform Static Analysis on Agent-Generated Code 

○ Use tools like: 
■ Bandit for Python 
■ Semgroup for multi-language analysis 
■ CodeShield for LLM-generated code 

3. Enforce Resource Limitations 

○ Set strict CPU, memory, and execution time limits 

○ Implement timeouts for all operations 

4. Additional Security Measures 

○ Use code signing or verification when possible 

○ Implement strict file system and network restrictions 

○ Use allow-lists for permitted commands 

○ Require Human-In-The-Loop (HITL) approval for high-risk operations 

○ Sanitize all executed code output 

○ Implement runtime monitoring during execution 

5.3. KC6.3 – Database Execution (Queries and RAG access) 

Core Threats: SQL injection (T2), Unauthorized data exposure/modification (T3), RAG data 
poisoning/sensitive data retrieval (T1, T5, T3) 

Controls: 

1. Use Managed Vector Databases with Access Controls 



 

Page 60 
 
genai.owasp.org - 

○ Restrict data ingest to match the access control capability (never ingest data that can’t be 
protected from unauthorized users) 

○ Apply data classification labels to enforce user privilege 

i. Utilize specialized RBAC RAGs like Elastic RAG 

ii. Pinecone with authentication platforms like Clerk 

iii. Authorization platforms like Aserto 

2. Implement Query Safety Measures 

○ Use parameterized or template queries/ORMs exclusively. Never construct SQL using string 
concatenation. 

○ Grant database access via least-privilege user accounts, eg SELECT only, limited tables, or 
row/column level security 

○ Filter/block dangerous SQL keywords (e.g., DROP, TRUNCATE) 

○ Validate all user inputs influencing queries - if possible, derive from controlled channels 
only vs context window. 

3. RAG-Specific Controls 

○ Implement post-retrieval filtering to check for sensitive content (PII) before agent use 

○ Apply content verification before embedding into vector stores 

○ Rate-limit retrieval operations 

4. Limitation (Excessive Retrieval)  

5.4. KC6.4 – Web Use 
Core Threats: Malicious web content (XSS, exploits) (T11), Leakage of confidential information (T6), 
Phishing/deception (T7), Server-Side Request Forgery (SSRF) (T2, T3), Access to user's browser data - 
Sensitive Data Exposure (T3) 

Controls: 

1. Sandbox Browser Components 



 

Page 61 
 
genai.owasp.org - 

○ Run in tightly controlled environments 

○ Avoid using extensions or operating directly in the user's browser 

2. Implement URL Security 

○ Use URL filtering with allow lists 

○ Leverage Secure Web Gateway (SWG) or Data Loss Prevention (DLP) 

○ Perform reputation checks on target domains 

○ Enforce proper TLS verification 

○ Detects and blocks open redirects or excessive redirection chains. Further, use DNS-based 
filtering in addition to HTTP-level filtering. 

3. Apply Protective Measures 

○ Use network segmentation to prevent access to internal systems (mitigating SSRF) 

○ Throttle web access rate to prevent abuse 

○ Restrict downloadable file types 

○ Implement content sanitization before processing 

○ Inspect embedded/linked content (e.g., iframes, JS-injected sources) 

4. Logging and Monitoring 

○ Log all URL accesses and HTTP responses 

5.5. KC6.5 – Controlling PC Operations (Filesystem, OS Commands) 
Core Threats: Unauthorized file access/modification (T3), Arbitrary OS command execution (T11, T3, T2), 
Lateral movement (T3) 

Controls: 

1. Apply Strict Isolation 

○ Use OS-level sandboxing 



 

Page 62 
 
genai.owasp.org - 

○ Run agents as restricted users with minimal privileges 

○ Consider dedicated containers or VMs for isolation 

2. Implement Access Controls 

○ Define strict allow/deny lists for permitted OS operations and file paths 

○ Use virtual filesystem interfaces where appropriate 

○ Intercept OS command calls to enforce allow-lists 

3. Limit accumulation of sensitive data 

○ To maintain its status, the sandbox should not accumulate data and sessions 

4. Enhance Monitoring and Oversight 

○ Log all OS-level actions performed by the agent 

○ Consider HITL approval for critical operations 

○ Implement command validation before execution 

5.6. KC6.6 – Operating Critical Systems (e.g., SCADA controls) 
Core Threats: Catastrophic physical outcomes (T2, T3, T6, T7), Malicious control injection (T2, T6), False data 
influencing decisions (T1, T5) 

Controls: 

1. Apply Maximum Isolation 

○ Use air-gapped or highly segmented networks 

○ Implement physical security measures 

2. Enforce Multi-Factor Authentication 

○ Switch to external flow to require MFA for specific sensitive actions where possible - do not 
use agent to mediate MFA flow or retain privileged session 



 

Page 63 
 
genai.owasp.org - 

○ Implement mandatory HITL for every critical action, succinct and engaging enough to retain 
the user’s attention each time (excessive/inefficient prompting results in indiscriminate 
approval) 

3. Implement Safety Mechanisms 

○ Default agent permissions to read-only monitoring 

○ Use anomaly detection tuned to system safety parameters 

○ Adhere to industrial control security standards 

○ Ensure physical interlocks and emergency overrides exist 

6. Agentic AI and the Supply 
Chain 
6.1 Code Security 

6.1.1 - Third party libraries & frameworks 

● Standard supply chain applies 

● SCA scanning  

● Hashes & package locks for 3rd party versioning 

● SBOMs 

6.1.2 - LLM/Agent-generated code 

● Utilize sandboxing for any agent-generated/run code (3.2.3) 

● Validate packages before running generated code 

● HITL for high-risk code execution operations 

● Licenses & provenance should be validated for third-party libraries before installation 

6.2 Environments & Development 



 

Page 64 
 
genai.owasp.org - 

6.2.1 - LLM / Logic System 

● Use the same LLMs in lower environments & production for higher reliability 

● Ensure the provenance of LLMs in a public registry (like Hugging Face) by verifying hashes and 
contributors 

● Use LLM and SCA scanners to scan for both third-party package vulnerabilities and security issues 
within LLM code (where applicable) 

6.2.2 - Version Control & Code Management 

● Utilize version control with LLMs & logic systems to track behavior 

● Implement version control on prompts & instructions to increase reliability and auditability of 
behavior 

● Use commit IDs and hashes for data changes 

6.2.3 - Permission management 

● Don’t give agents access to the repositories/data sources that build/deploy them 

● Manage permissions to data sources outside the environments the agent is running in 

● Use code to modify IAM/roles permissions for agents to review changes 

6.3 Agent & Tool Discovery 

6.3.1 - Agent Cards 

● Identify trust relationships with agent cards and descriptions, and minimize trust with unvalidated 
agent systems 

● Employ DIDs for agent verification and authentication 

6.3.2 - Local vs Remote Agent Registries 

● Use logical or network barrier between local  & remote registries to prevent registry confusion and 
accidental agent boundary traversal 

● Classify and separate private and public agents, data, and actions. Prevent agents from sharing data 
or performing actions across these boundaries 



 

Page 65 
 
genai.owasp.org - 

● Use trust relationships and controls like certificate pinning to ensure agents only communicate with 
approved registries and environments 

 

7. Assuring Agentic 
Applications 
Assurance strategies for agentic applications must extend beyond static testing. Consider these 
approaches: 

7.1. Red Teaming Agentic Applications: 
Red teaming simulates adversarial attacks to detect and address vulnerabilities in different scopes, starting 
with a specific application through the entire organization's security infrastructure.  

Red teaming strategy for agentic applications requires complex interactions, autonomous decision-making, 
and integration with external systems. Proactive red teaming identifies possible attack vectors by assessing 
the key components of agentic systems, including not only prompt injection techniques, but also privilege 
escalation through tools, memory poisoning, and plan manipulation. 

The OWASP ASI Red Teaming Guide for Agentic AI offers a risk-based methodology to handle security 
concerns with LLMs. It promotes a holistic approach that includes model review, implementation testing, 
infrastructure assessment, and runtime behavior analysis. Cross-functional coordination amongst data 
science, cybersecurity, ethical, and legal departments is critical. The guide encourages ongoing monitoring 
and iterative improvement in response to evolving AI threats. 

Prompt injection attacks and red teaming detection strategies: 

Prompt injection attacks target vulnerabilities in natural language processing systems by altering input to 
cause unauthorized actions. Such vulnerabilities might cause sensitive data leakage and bypass of defined 
guardrails. The use of red teaming tools can mimic multiple prompts to assess susceptibility to these 
attacks, utilizing technologies such as Promptfoo to automate the detection procedure. Continuous and 
proactive testing is required to anticipate new prompt injection tactics. 

The OWASP GenAI Security Red Teaming Guide lists available tools and datasets in Appendix B. 

New frameworks were released recently targeting agentic AI key components such as tool calling 
manipulation, privilege escalation, and memory poisoning. 



 

Page 66 
 
genai.owasp.org - 

Examples of such frameworks: 

Tool Description URL 

AgentDojo A dynamic evaluation framework to 
evaluate prompt injection attacks 
and defenses for LLM agents. 
Contains targeted injection 
attacks, instructing the agent to 
execute malicious tasks using 
available tools. 

https://agentdojo.spylab.ai/ 

Agentic 
Radar 

Agentic Radar is designed to 
analyze and assess agentic 
systems for security and 
operational insights. It helps 
developers, researchers, and 
security professionals understand 
how agentic systems function and 
identify potential vulnerabilities. 

https://github.com/splx-ai/agentic-
radar 

Agent-
SafetyBench 

An evaluation benchmark built 
primarily to assess the safety of 
Large Language Model (LLM) 
agents. Comprises a set of prompts 
or situations designed to evaluate 
whether agents follow safety 
norms and prevent creating 
damaging, unethical, or risky 
content or actions. 

https://github.com/thu-coai/Agent-
SafetyBench 

AgentFence Red team tool equipped with 
multiple attack scenarios focusing 
on identifying vulnerabilities like 

https://github.com/agentfence/age
ntfence 



 

Page 67 
 
genai.owasp.org - 

prompt injection, role confusion, 
and system instruction leakage. 

Agent 
Security 
Bench (ASB) 

Red team tool equipped with 
multiple attack scenarios including 
Direct Prompt Injections (DPI), 
Indirect Prompt Injections (IPI), 
Plan-of-Thought (PoT) Backdoor, 
and Memory Poisoning Attacks. 

https://github.com/agiresearch/AS
B 

Multilingual 
Benchmark 
for Agent 
Security 
(MAPS) 

 

Security evaluation benchmark 
built to assess multi-lingual 
security of AI agent based on Multi-
lingual adaptation of set of well 
known agentic benchmarks (like 
ASB) translated to 10 different 
languages. 

https://huggingface.co/datasets/Fu
jitsu-FRE/MAPS 

AgentPoison Red teaming tool used for injecting 
malicious instances into the 
knowledge base or memory, to be 
retrieved when specific triggers 
appear in the input query. 

https://arxiv.org/pdf/2407.12784 

 

Privilege Escalation in Agentic Applications and Red Team Methodologies 

Privilege escalation attacks require acquiring illegal access to higher levels of control in a system. The ability 
of agentic AI to make independent decisions broadens the scope of potential attacks. Red teaming 
simulates situations to discover privilege escalation threats, such as leveraging inter-agent relationships 
and manipulating external integrations.  
Privilege escalation can affect widely, from the application itself, the deployed infrastructure, to affecting 
the agent's connected agencies, which allow it access to the external environment and additional systems. 
 

Memory Poisoning Threats and Red Teaming Techniques for Identification: 



 

Page 68 
 
genai.owasp.org - 

Memory poisoning attacks can use either short-term memory, such as poisoned contextual information 
injected into the prompt, or through long-term memory and knowledge bases that introduce poisoned 
content that influences the agent’s decision-making.  
AgentPoison and ABS are red-teaming frameworks that employ memory poisoning attacks to discover such 
vulnerabilities, resulting in a high possibility of retrieving poisoned data.  

7.2. Behavioral Testing for Agentic Applications: 
Behavioral testing for AI agents emphasizes evaluating their activities and interactions rather than solely 
examining their underlying structure or code. 
It is an essential assurance approach to ensure that agentic applications yield consistent and safe outcomes 
across diverse inputs and scenarios. 

This testing approach aims to uncover hidden problems such as unexpected actions, logical errors, or the 
pursuit of harmful goals. Behavioral testing methods require a systematic approach that encompasses 
defining explicit objectives for the agent, utilizing benchmark datasets to determine performance metrics, 
executing simulations in regulated environments to analyze the agent's behavior under varying conditions, 
and employing both human and automated assessments to evaluate the quality and safety of the results. 

Benchmarks: 

Behavioral testing depends on recognized benchmark datasets and task suites as fundamental elements for 
standardizing performance evaluation. These benchmarks offer various tasks, datasets, and metrics 
intended to examine the capabilities and behaviors of AI agents in varied contexts and operational 
environments. 

Example: 

AgentBench: A comprehensive benchmark specifically designed to evaluate the task-solving abilities of 
agents across various domains, including operating systems, databases, and knowledge graphs. It assesses 
planning, decision-making, and tool usage behaviors. 

HELM (Standofrm): HELM evaluates models across multiple metrics, including accuracy, robustness, 
fairness, bias, and toxicity, using standardized scenarios. Its results provide insights into model behaviors 
related to truthfulness and potential harms. 

WebArena & The Agent Company: This benchmark evaluates autonomous agents performing tasks within 
realistic, complex web environments, testing behaviors like navigation, form filling, information retrieval, 
and adapting to dynamic website changes. 

Evaluation Framework: 



 

Page 69 
 
genai.owasp.org - 

A structured assessment framework offers a systematic process for implementing benchmarks and 
performing testing. These frameworks streamline the process of defining objectives, selecting test cases 
(often derived from benchmarks), executing tests in controlled or simulated environments, and analyzing 
results against expected behavioral standards (both positive and negative). 

Examples: 

Inspect_evals (UK AI Safety Institute): Open source framework to evaluate any generative model on any 
benchmark 

GenAI evaluation service (Google):  Evaluation framework for any generative model or application and 
benchmark the evaluation results against defined judgment, using the user’s evaluation criteria. 

Bedrock Evaluations (Amazon): Evaluation framework for LLMs and integration with external sources as 
RAGs. 

For Agentic Application security, the first step in selecting an appropriate benchmark is determining the 
type of benchmark required. For Example: 

Steps to take to make the right choice:  

AI security benchmarks today differ widely in scope, evaluation methods, and threat coverage, leading to 
gaps in defense and inconsistent comparisons.  

The OWASP GenAI Red Teaming Guide has already curated a list of AI security benchmarks, focusing on key 
threat vectors.  Given the diversity and specificity of these benchmarks, a step-by-step guideline is 
necessary to help organizations effectively choose and apply the right benchmark for their unique security 
needs. This structured approach ensures that AI systems are tested in a comprehensive and reproducible 
manner, leveraging the curated benchmarks without redundancy, while addressing emerging vulnerabilities 
in a consistent, actionable way.   

Anthropic’s initiative for third-party model evaluations highlights that not all benchmarks are focused on AI 
security. Some assess general performance, like accuracy, rather than security vulnerabilities. 
Understanding the specific evaluation goal is crucial before selecting a benchmark. By identifying whether 
the focus is on performance, security, or robustness, organizations can choose the most relevant 
benchmarks, ensuring they align with the intended objectives and test AI systems for the right aspects. 

The EU AI Act's Code of Practice also emphasizes safety and security measures for AI systems, aiming to 
mitigate risks associated with their deployment. AI security focuses on protecting systems from malicious 
threats, while AI safety ensures that systems operate as intended without causing unintended harm. 



 

Page 70 
 
genai.owasp.org - 

AI security benchmarks need meta-evaluation to uncover issues. Examples are inconsistency (variance 
introduced), ambiguity (benchmark misunderstood), incompleteness (missing user needs), or inaccuracy 
(bias introduced). This ensures benchmarks stay relevant, realistic, and genuinely reflect AI Application 
security. 

By embedding lifecycle practices—scheduled updates, community peer review, and governance checks—the 
guideline keeps benchmarks up to date as adversarial techniques evolve. This structured, security-centric 
process ensures organizations select benchmarks that truly reflect and defend against the current AI threat 
landscape. 

Step-by-Step Guide: Selecting a Security Benchmark for Agentic AI Applications 

1. Define Security Objectives: Identify your security goals based on AI security principles: 

○ Confidentiality: Protect training data and model parameters. 

○ Integrity: Ensure data and model integrity. 

○ Availability: Keep services operational. 

○ Adversarial Robustness: Protect models from adversarial attacks. 

○ Privacy Protection: Use techniques like anonymization. 

○ Transparency and Accountability: Ensure explainability and traceability. 

○ Governance and Compliance: Follow frameworks like NIST RMF. 
 

2. Assess Threat Landscape: Identify relevant threats, such as: 

○ Data poisoning. 

○ Adversarial attacks. 

○ Model extraction. 

○ Privacy breaches. 

○ Denial-of-Service (DoS). 



 

Page 71 
 
genai.owasp.org - 

○ Misuse of agent autonomy. 
 

3. Research Existing Benchmarks Look for benchmarks addressing agentic AI vulnerabilities, such as: 

○ Adversarial robustness. 

○ Privacy protection. 

○ Backdoor detection. 

○ Model extraction security. 

4. Evaluate Benchmark Criteria. Ensure the benchmarks: 

○ Align with your security objectives. 

○ Cover the relevant threats. 

○ Are standardized and widely accepted. 

○ Provide actionable insights. 

5. Test Benchmark Suitability Test benchmarks on representative models or datasets. Focus on: 

○ False positives. 

○ Effectiveness under adversarial conditions. 

○ Resilience under attack. 

6. Compare and Select After testing, compare benchmarks based on coverage, relevance, and 
effectiveness. Select the one that best fits your needs. 
 

7. Establish Continuous Evaluation. Implement continuous evaluation to adapt to new threats: 

○ Regularly re-test with updated benchmarks. 

○ Integrate benchmarks into CI/CD pipelines. 

○ Adjust the threat model as new risks emerge. 
 



 

Page 72 
 
genai.owasp.org - 

8. Engage with the AI Security Community. Stay informed by participating in forums, workshops, and 
discussions. Engaging with the community provides insights on the latest security and benchmark 
developments. 

Explainability Audits 

● Use CoT for some insight into agentic reasoning, understanding that what the agent says and 
“thinks” aren’t necessarily aligned. (https://transformer-circuits.pub/2025/attribution-
graphs/biology.html) 

● Utilize HITL at critical junctions to understand and gate agent actions. Criticality is defined by 
regulations like the EU AI Act. 

● Use explainable AI (XAI) strategies like SHAPE, LIME, Grad-CAM, or T-SNE as needed by the model in 
use, if possible. 

● Record agent-to-agent goal negotiations and tool interactions to understand additional inputs that 
may be misdirecting an agent. Especially for the more sensitive exchanges/tool calls, like database 
modifications. 

● Log which permission sets or identities were used for agentic actions. This will indicate who the 
agent “thought” it was acting on behalf of. 

 

8. Secure Agentic 
Deployments 
Deploying LLM agents into production environments requires careful consideration of security beyond the 
model's inherent capabilities. While the specifics depend heavily on the application and risk profile, several 
principles and practices contribute to a more robust and secure agentic system. The following points 
provide a flavor of key areas to address: 

● Secure Pipelines and Checks for Rogue Agents: Implementing rigorous CI/CD pipelines is 
important, but agent security requires more than standard code checks. These pipelines must 
incorporate automated vulnerability scanning of dependencies, static analysis focusing on potential 
insecure Agent’s tool usage patterns, and dynamic testing specifically designed to probe for prompt 
injection vulnerabilities or unintended goal deviation before deployment. Furthermore, 
incorporating code signing, provenance tracking for agent versions, and potentially manual security 



 

Page 73 
 
genai.owasp.org - 

reviews for agents handling high-risk tasks helps ensure that only vetted and approved agent logic 
reaches production, preventing deliberately malicious or inadvertently vulnerable agents from being 
deployed. 

● Role Containerization or Function-as-a-Service (FaaS): To limit the potential blast radius should an 
agent instance be compromised, each agent or distinct agent role should operate within a strongly 
isolated environment. Utilizing containerization technologies (like Docker with Kubernetes) or FaaS 
platforms (like AWS Lambda or Google Cloud Functions) allows for strict resource limits (CPU, 
memory, network), network segmentation policies, and ephemeral execution contexts. This 
enforces the Principle of Least Privilege at the infrastructure level, preventing a compromised 
agent from easily accessing resources or impacting other agents or system components beyond its 
designated scope. 

● API Access Control, Rate-Limits, and API Gateways: Agents heavily rely on external tools accessed 
via APIs, or other integration/interaction points such as MCP Server or Google A2A Agent Server via 
AgentCard, making these interaction points critical security boundaries. An API/Agent Gateway 
should mediate all tool invocations, enforcing strict authentication (verifying the agent's identity) 
and authorization (confirming the agent has permission to call that specific tool with those 
parameters). Implementing granular rate limiting per agent or per tool prevents denial-of-service 
attacks (intentional or accidental) and controls costs associated with API usage. The gateway also 
serves as a vital point for logging and auditing all tool interactions. 

● Alerting on Anomalous Behavior: Continuous monitoring and alerting are essential for detecting 
potential compromises or malfunctions. Systems should baseline normal agent behavior (e.g., 
typical tool usage frequency and sequences, resource consumption) and trigger alerts upon 
significant deviations. Particular attention should be paid to unexpected or unauthorized tool use 
attempts, sudden shifts in the agent's apparent goal or task execution logic (which might indicate 
successful injection or manipulation), or anomalous patterns in data access or external 
communication, enabling rapid investigation and response. 

● Human Oversight in High-Stakes Environments: Where critical decisions, high-risk actions, or 
significant deviations from expected behavior require explicit human review and approval before 
execution, implement robust human-in-the-loop workflow as full autonomy is often inappropriate 
and many tool invocations need human approval (for example, a large financial transfer or change 
affecting a human subject). In addition, if any untrusted data influences an agent with access to 
high-privileged tools (confidential information, integrity-sensitive systems), and for agents 
operating in domains with significant consequences (e.g., finance, healthcare, education, or critical 
infrastructure), oversight is key and should consider Human-Over-The-Loop (continuous 
supervision), see 3.3.1 Monitoring. Adaptive trust mechanisms can dynamically adjust the level of 
required oversight based on the agent's performance, context, and the risk associated with the 



 

Page 74 
 
genai.owasp.org - 

specific action. For a more complete definition of high-risk systems, review the EU AI Act’s Annex 
on high-risk systems. 

● Managing Non-human Identities: Each agent instance or service requires a distinct, manageable 
identity for secure interaction with APIs, tools, other agents, and other system components. These 
machine identities (e.g., service accounts, workload identities) must be treated with the same rigor 
as human identities, involving secure provisioning processes, robust credential management 
(including secure storage and regular rotation of keys/tokens using secrets managers), clear 
ownership, and reliable de-provisioning when an agent is retired to prevent orphaned, potentially 
exploitable identities. 

9. Runtime hardening. 
Securing agentic applications running in a VM means combining traditional VM security hardening with 
agentic-specific controls like sandboxing, auditability, capability constraints, and runtime behavioral 
monitoring. Here's a breakdown tailored for LLM-driven or tool-augmented agentic apps: 

9.1 Harden the Virtual Machine (Base Level) 
Before even talking about agentic specifics, the host VM must be secure: 

Baseline VM Hardening 

● Use minimal base images (e.g., distroless, Alpine, microVMs). 

● Enable Secure Boot, TPM-backed disk encryption (e.g., via dm-crypt/LUKS). 

● Disable all unnecessary services (sshd, cron, etc.). 

● Apply firewall rules (iptables/nftables) to restrict ingress/egress by default. 

● Patch regularly using automation (e.g., unattended upgrades or distroless image re-pulls). 

Network Isolation 

● Put the VM inside a private subnet or VPC. 

● Use Service Meshes or API Gateways for controlled inter-agent communication. 

● Prevent direct internet access unless explicitly needed (and monitor it) 

 



 

Page 75 
 
genai.owasp.org - 

9.2 Contain the Agentic Runtime 
Now, focus on the agentic app itself running in the VM: 

Sandbox the Agent Processes 

● Run each agent or tool in its own restricted namespace or container inside the VM (e.g., via gVisor, 
Firecracker, or even Docker-in-VM). 

● Use AppArmor/SELinux or seccomp profiles to restrict syscalls. 

● Limit file system access using mount namespaces and read-only volumes. 

● Inject ephemeral storage (e.g., tmpfs) for memory-sensitive LLM tools. 
 

Scoped Capabilities 

● Use an AGNTCY-like capability control layer: 

○ Agents can only use explicitly declared tools (e.g., searchDocs, not shellExec). 

○ Introduce capability_tokens scoped per session. 

○ Use JSON-RPC wrappers (like MCP) to enforce capability boundaries. 
 

 

9.3 Secure the Agent’s Memory, Tools, and Context 
Memory and State Hygiene 

● Encrypt in-memory state (where feasible). 

● Auto-clear memory on session end (e.g., clear Redis/Vector DB agents). 

● Use VM hooks (e.g., systemd unit stop triggers) to flush memory or rotate keys. 
 

Tool Execution Control 

● Implement runtime guards for tool calls: 



 

Page 76 
 
genai.owasp.org - 

○ Validate inputs and outputs. 

○ Scan for prompt injection or malicious redirection attempts. 

● Use AGNTCY’s policy engine to gate access dynamically: 

○ E.g., only allow call_api("billing") from the “finance-agent.” 

 

9.4 Observability + Forensics 
Audit Everything 

● Every agent action (tool use, messages, memory write) should: 

○ Be logged with timestamp, agentID, sessionID, payload hash. 

○ Include input/output signature fingerprints. 

● Store logs securely with forward integrity (e.g., append-only + Merkle proofs or signed logs). 
 

Behavioral Anomaly Detection 

● Use runtime policy engines (e.g., Open Policy Agent) or integrate LLM anomaly detectors to spot: 

○ Unusual tool invocation patterns. 

○ Cross-agent communication deviations. 

○ Memory bloat or frequent memory peeks. 

 

9.5 Identity, Authentication, and Agent Authorization 

Identity & Session Management 

● Use JWTs, mTLS, or HMAC-based auth per agent session. 

● Assign each agent a unique ephemeral session context using MCP. 



 

Page 77 
 
genai.owasp.org - 

Role-based + Capability-based Access 

● Combine RBAC (agent classes) with capability tokens. 

● Example: 
 

○ research-agent → can access docSearch, summarize. 

○ ops-agent → can use issueCommand, getStatus. 
 

 

9.6 (Optional) Cloud-Specific Hardening 
If your VM is running in AWS/GCP/Azure: 

● Restrict metadata service access (e.g., IMDSv2 in AWS). 

● Use IAM roles scoped per VM, not global. 

● Enable Confidential Computing if supported (e.g., AMD SEV, Intel SGX 

 

 

 

 

 
  



 

Page 78 
 
genai.owasp.org - 

Acknowledgements 
 

 

  

 

 

 

 

 

 

 

 

 

 

 

. 

 

 

 

 

Contributors 
Idan Habler, Intuit, Securing Agentic Apps Guide Co-lead 
Vineeth Sai Narajala, Meta, Securing Agentic Apps Guide 
Co-lead 
Rob Truesdell, Pangea, Securing Agentic Apps Guide Co-
lead 
Tomer Elias, HUMAN Security 
Ben Diamant, HUMAN Security 
Lindsay Kaye, HUMAN Security 
Emile Delcourt  
Ron Bitton, Intuit 
Ryan Amos, Intuit 
Itsik Mantin, Intuit 
Joshua Beck, SAS 
Volkan Kutal, Commerzbank AG  
Ken Huang, DsistributedSystems.AI, OWASP AVSS 
Evgeniy Kokuykin, Raft 
Lindsay Kaye 
Sonu Kumar  
Keren Katz, Tenable 
Rafael Sandroni, GuardionAI 
Abhineeth Pasam 
Akram Sheriff, Cisco 
Sandy Dunn 
Victor Lu 
Roman Vainshtein, Fujitsu 
Omer Hofman, Fujitsu 
John Sotiropoulos, Kainos, Agentic Security Initiative Co-
lead 
Ron Del Rosario, SAP, Agentic Security Initiative Co-lead 
 
 
 

 

 
 

ASI Review Board 

Alejandro Saucedo - Chair of ML Security Project at 
Linux Foundation, UN AI Expert, AI Expert for Tech 
Policy, European Commission  
Apostol Vassilev - Adversarial AI Lead, NIST 
Chris Hughes - CEO, Aquia 
Hyrum Anderson - CTO, Robust Intelligence  
Steve Wilson - OWASP Top 10 for LLM Applications 
and Generative AI Project Lead and Chief Product 
Officer, Exabeam 
Scott Clinton - OWASP Top 10 for LLM Applications 
and Generative AI Project Co-Lead 
Vasilios Mavroudis- Principal Research Scientist 
and Theme Lead, the Alan Turing Institute 
Josh Collyer, Principal Security Researcher, Theme 
Lead 
Egor Pushkin, Chief Architect, Data and AI at Oracle 
Cloud 
Peter Bryan, Principal AI Security Research Lead- 
AI Red Team,  Microsoft  
 
 
 

 



 

Page 79 
 
genai.owasp.org - 

OWASP Gen AI Security 
Project Sponsors 
 
We appreciate our Project Sponsors, funding contributions to help support the objectives of the project and 
help to cover operational and outreach costs augmenting the resources provided by the OWASP.org 
foundation. The OWASP Gen AI Security Project continues to maintain a vendor neutral and unbiased 
approach. Sponsors do not receive special governance considerations as part of their support. Sponsors do 
receive recognition for their contributions in our materials and web properties. 

 All materials the project generates are community developed, driven and released under open source and 
creative commons licenses. For more information on becoming a sponsor, visit the Sponsorship Section on 
our Website to learn more about helping to sustain the project through sponsorship.  

Project Sponsors: 

 

Sponsor list, as of publication date. Find the full sponsor list here. 



 

Page 80 
 
genai.owasp.org - 

Project Supporters 
 

Project supporters lend their resources and expertise to support the goals of the project. 

Accenture  
AddValueMachine Inc  
Aeye Security Lab Inc.  
AI informatics GmbH  
AI Village  
aigos  
Aon  
Aqua Security  
Astra Security  
AVID  
AWARE7 GmbH  
AWS  
BBVA  
Bearer  
BeDisruptive  
Bit79  
Blue Yonder  
BroadBand Security, Inc.  
BuddoBot  
Bugcrowd  
Cadea  
Check Point  
Cisco  
Cloud Security Podcast  
Cloudflare  
Cloudsec.ai  
Coalfire  

Cobalt   
Cohere  
Comcast  
Complex Technologies  
Credal.ai 
Databook  
DistributedApps.ai  
DreadNode  
DSI  
EPAM  
Exabeam  
EY Italy  
F5  
FedEx  
Forescout  
GE HealthCare  
Giskard  
GitHub  
Google  
GuidePoint Security  
HackerOne  
HUMAN Security 
HADESS  
IBM  
iFood  
Intuit 
IriusRisk  
  

Kainos  
KLAVAN   
IronCore Labs  
IT University Copenhagen   
Klavan Security Group  
KPMG Germany FS  
Kudelski Security  
Lakera  
Lasso Security  
Layerup  
Legato  
Linkfire 
LLM Guard  
LOGIC PLUS  
MaibornWolff  
Mend.io  
Microsoft  
Modus Create  
Nexus  
Nightfall AI  
Nordic Venture Family  
Normalyze  
NuBinary  
Palo Alto Networks  
Palosade  
Praetorian  
Preamble  
 

PromptArmor  
Pynt  
Prompt Security   
Quiq   
Red Hat  
RHITE  
SAFE Security  
Salesforce  
SAP  
Securiti  
See-Docs & Thenavigo  
ServiceTitan  
SHI  
Smiling Prophet  
Snyk  
Sourcetoad 
Sprinklr  
stackArmor  
Tietoevry  
Trellix  
Trustwave SpiderLabs  
U Washington  
University of Illinois  
VE3  
WhyLabs  
Yahoo  
Zenity 

Supporter list, as of publication date. Find the full supporter list here. 
 


