2025 CYBERSECURITY ATTACKS PLAYBOOKS

TABLE OF CONTENTS

AI-ENHANCED PHISHING ATTACKS PLAYBOOK
ADVANCED RANSOMWARE CAMPAIGNS PLAYBOOK
SUPPLY CHAIN COMPROMISES PLAYBOOK11
ZERO-DAY EXPLOITS PLAYBOOK14
AI-POWERED MALWARE PLAYBOOK17
DEEPFAKE SOCIAL ENGINEERING PLAYBOOK20
QUANTUM COMPUTING THREATS PLAYBOOK23
Iot VULNERABILITIES PLAYBOOK2C
INSIDER THREATS PLAYBOOK23
CLOUD SECURITY MISCONFIGURATIONS PLAYBOOK
ADVANCED PERSISTENT THREATS (APTs) PLAYBOOK
CREDENTIAL STUFFING ATTACKS PLAYBOOK
FLELESS MALWARE PLAYBOOK43
ROGUE ACCESS POINT (ROGUE AP) ATTACK PLAYBOOK
<u>SQL INJECTION ATTACK PLAYBOOK51</u>
STEGANOGRAPHY-BASED DATA EXFILTRATION PLAYBOOK
CACHE POISONING ATTACK PLAYBOOK
CACHE POISONING ATTACK PLAYBOOK
CACHE POISONING ATTACK PLAYBOOK53 HOMOGRAPH ATTACK PLAYBOOKC2
CACHE POISONING ATTACK PLAYBOOK53 HOMOGRAPH ATTACK PLAYBOOKC2 DENIAL-OF-SERVICE (DoS) ATTACK PLAYBOOKCC
CACHE POISONING ATTACK PLAYBOOK

AI-ENHANCED PHISHING ATTACKS PLAYBOOK

1. PREPARATION

- Create and Maintain a List of:
 - Approved Email Communication Tools:
 - Identify all sanctioned email systems and ensure monitoring for unauthorised usage.
 - Key User Groups:
 - Executives, finance teams and high-value targets (HVTs) vulnerable to phishing attempts.
 - Common Indicators of AI-Enhanced Emails:
 - Abnormal linguistic patterns, overly personalised messages or AIgenerated content.

Email Templates:

- Awareness Campaigns:
 - Inform employees about AI-generated phishing tactics.
 - Provide guidance on recognising suspicious emails with examples.
- Internal Communication:
 - Notify teams about the detection of AI-driven phishing campaigns.
- External Notifications:
 - Alert partners or clients if they might be impacted by phishing targeting your organisation.

Ensure that:

- Email security solutions (e.g., DMARC, DKIM, SPF) are implemented and monitored.
- Anti-phishing software detects:
 - Emails containing language indicative of AI tools (e.g., ChatGPT, Bard).
 - Highly personalised emails targeting HVTs.
 - Links leading to phishing sites hosted on compromised domains.
 - Multi-Factor Authentication (MFA) is enforced across all critical systems.
- Training sessions on phishing simulations are conducted regularly.

• Perform Fire Drills:

- Test the playbook with scenarios involving AI-driven phishing:
 - Highly personalised emails to HVTs.
 - Phishing links mimicking login portals.
- Validate detection and response times.
- Ensure escalation paths are updated.

• Review Threat Intelligence:

- Monitor trends in AI-driven phishing attacks.
- Review intelligence on compromised accounts or exploited platforms.
- Analyse phishing sites for generative AI usage patterns.

Asset Inventory:

- Maintain a list of:
 - HVTs and their associated email accounts.
 - Domains used for corporate communications.
 - Approved third-party tools and services integrated with email.

2. DETECT

- MD1. Identify Threat Indicators:
 - Alerts:
 - SIEM:
 - Unusual email activity (e.g., multiple failed login attempts).
 - Sudden spikes in email traffic from external domains.
 - Email Security Solutions:
 - Flagged suspicious emails containing generative AI markers.
 - Network Monitoring:
 - Links leading to known phishing sites or credential harvesting.
 - Notifications:
 - Employees reporting phishing emails.
 - External vendors or clients flagging suspicious communication.

• MD2. Identify Risk Factors:

- Common Risks:
 - Credential theft via fake login portals.
 - Deployment of malicious attachments (e.g., macros, Trojans).
- Company-Specific Risks:
 - Potential financial losses or reputational damage.
 - Exposure of proprietary data.
- MD3. Data Collection:
 - Email Headers:
 - Analyse metadata for spoofed addresses or unusual sending patterns.
 - Attachments:
 - Inspect for malicious macros or payloads.
 - URLs:
 - Validate links for phishing or C2 activity.

• MD4. Categorise:

0

- Types of AI-Enhanced Phishing:
 - **Spear Phishing**: Highly personalised messages.
 - Whaling: Targeting executives with realistic-looking requests.
 - Business Email Compromise (BEC): Impersonating trusted entities.
- MD5. Is it an Advanced Attack?
 - If the attack uses deepfake audio or AI-enhanced emails:
 - Escalate to senior analysts or Incident Response Team (IRT).
- MD6. Triage:

- Assess the impact:
 - Compromised accounts or credentials.
 - Spread to other employees or clients.

• MD7. Is it a False Positive?

- Document and close if verified as false.
- If true, escalate and move to the **Analyse** phase.

3.ANALYSE

- MA1. Verify:
 - Cross-check phishing email details with reported IOCs.
- MA2. Identify IOCs:
 - Use tools like VirusTotal, URLScan or PhishTank to analyse:
 - URLs.
 - Email attachments.
 - Sender domains.

• MA3. Extract IOCs:

- Inspect logs for:
 - IPs or domains associated with phishing links.
 - Sender email spoofing techniques.

• MA4. Submit to Partners:

- Share IOCs with security vendors for signature updates.
- MA5. Scan Enterprise:
 - Search for affected users and suspicious email activity.

4. CONTAIN / ERADICATE

• MC1. Contain:

- Quarantine phishing emails.
- Lock compromised accounts and enforce MFA reset.
- MC2. Eradicate:
 - Remove phishing links from email servers.
 - Terminate malicious processes initiated via compromised accounts.

• MC3. Validate:

- Ensure no residual phishing emails remain.
- Confirm removal of all malicious artifacts.

5. RECOVER

• MR1. Restore Operations:

- Re-enable affected accounts with secure credentials.
- Educate impacted users on recognising phishing attempts.

6. LESSONS LEARNT

• Conduct a Post-Incident Review:

- Improve detection strategies for AI-enhanced phishing.
- Update the playbook with new tactics and response measures.
- Enhance employee awareness and training based on the attack vector.

ADVANCED RANSOMWARE CAMPAIGNS PLAYBOOK

1. PREPARATION

- Create and Maintain a List of:
 - Critical Assets:
 - Identify high-value systems (e.g., financial servers, executive devices, databases).
 - Maintain a list of sensitive data repositories.
 - Backup Systems:
 - Ensure backups are performed regularly and stored securely offline.
 - Key Executives and High-Value Targets (HVTs):
 - Identify individuals most likely to be targeted.
- Email Templates:
 - Internal Communication:
 - Notify employees of suspicious file downloads or ransomware activity.
 - Provide instructions for reporting suspicious behavior.
 - External Notifications:
 - Inform partners or vendors if they might be affected by the attack.
- Ensure That:
 - Endpoint Detection and Response (EDR) and antivirus tools are:
 - Configured to detect ransomware activities (e.g., file encryption, unusual process creation).
 - Updated regularly to include signatures for the latest ransomware variants.
 - Privileged Access Management (PAM) solutions enforce:
 - Least privilege access for all employees.
 - Time-bound access for administrative tasks.
 - Network segmentation restricts lateral movement across critical systems.
 - Multi-Factor Authentication (MFA) is enforced for all critical systems and VPNs.

Perform Fire Drills:

- Test playbook functionality quarterly.
- Validate detection and response against scenarios like:
 - Rapid file encryption on shared drives.
 - Ransomware targeting HVTs.
- Ensure escalation paths and contact lists are up to date.

Review Threat Intelligence:

- Monitor trends in ransomware campaigns (e.g., double extortion methods).
- Investigate ransomware variants targeting your industry.
- Review Indicators of Compromise (IOCs) from recent attacks.
- Asset Inventory:

- Maintain an up-to-date inventory of:
 - Critical systems and their owners.
 - Backup systems and processes.
 - Tools used for file encryption or decryption.

2. DETECT

- MD1. Identify Threat Indicators:
 - Alerts:
 - SIEM:
 - Sudden spike in file encryption activities.
 - Anomalous file deletion or modification.
 - EDR:
 - Processes mimicking ransomware behavior (e.g., high CPU usage, file renaming).
 - Network Monitoring:
 - Data exfiltration to external servers.
 - Connections to known ransomware command-and-control (C2) servers.
 - Notifications:
 - Users reporting:
 - Files with unusual extensions.
 - Ransom notes displayed on their devices.
- MD2. Identify Risk Factors:
 - Common Risks:
 - Data encryption leading to operational downtime.
 - Stolen data leaked online.
 - Company-Specific Risks:
 - Reputational damage if sensitive executive data is leaked.
 - Financial losses from downtime or ransom payments.
- MD3. Data Collection:
 - Process Analysis:
 - Inspect processes encrypting large volumes of files.
 - Network Traffic:
 - Analyse outbound connections to C2 domains or IPs.
 - Host Analysis:
 - Examine encrypted files for common ransomware extensions.
- MD4. Categorise:
 - Types of Ransomware Attacks:
 - **Encryption**: Files locked with a ransom note.
 - **Exfiltration**: Sensitive data stolen and threatened to be leaked.
 - **Hybrid**: Encryption combined with exfiltration (double extortion).
- MD5. Is it an Advanced Attack?
 - If the attack targets HVTs or involves sophisticated tactics:

- Escalate to Incident Response Team (IRT) and notify senior management.
- MD6. Triage:
 - Assess the scope of impact:
 - Number of affected hosts.
 - Potential exfiltration of sensitive data.

• MD7. Is it a False Positive?

- Document and close if verified false.
- If true, escalate and proceed to **Analyse**.

3.ANALYSE

- MA1. Verify:
 - Cross-check encryption behaviors with known ransomware signatures.

• MA2. Identify IOCs:

- Use tools like VirusTotal, Any.Run and Hybrid Analysis to analyse:
 - Encrypted files.
 - Malicious executables.
 - C2 domains or IPs.
- MA3. Extract IOCs:
 - Collect evidence from affected hosts:
 - Ransom notes.
 - Encryption keys (if visible).
 - Files modified during the attack.

• MA4. Submit to Partners:

- Share samples with cybersecurity vendors for analysis and signature creation.
- MA5. Scan Enterprise:
 - Search for IOCs across the network and endpoints.
 - Ensure no lateral movement or additional infections.

4. CONTAIN / ERADICATE

• MC1. Contain Affected Hosts:

- Isolate compromised systems using EDR solutions.
- Block C2 domains and IPs at the firewall.
- MC2. Eradicate:
 - Terminate ransomware processes.
 - Delete malicious executables and artifacts.
- MC3. Validate:
 - Ensure all encrypted files and ransomware artifacts are removed.
 - Perform a network-wide scan to confirm no additional threats.

5. RECOVER

• MR1. Restore Operations:

- Restore data from secure backups.
- Reimage compromised systems.
- Rotate credentials and enforce MFA on all accounts.

6. LESSONS LEARNT

Conduct a Post-Incident Review:

- Assess how ransomware bypassed existing defenses.
- Enhance detection and response strategies for future attacks.
 Update the playbook to include new IOCs and tactics observed during the incident.

SUPPLY CHAIN COMPROMISES PLAYBOOK

1. PREPARATION

- Create and Maintain a Vendor Inventory:
 - Identify all third-party vendors, partners and service providers.
 - Classify vendors by risk level based on the access they have to your systems.
- Conduct Vendor Risk Assessments:
 - Evaluate vendors' security postures regularly using:
 - Security questionnaires.
 - Vulnerability assessments or penetration tests.
 - Review vendors' compliance with standards (e.g., ISO 27001, SOC 2).
- Implement Security Controls:
 - Access Management:
 - Enforce least-privilege access for all vendor accounts.
 - Regularly audit and rotate credentials.
 - Network Segmentation:
 - Restrict third-party access to specific systems.
 - Use virtual private networks (VPNs) or zero-trust models for remote vendor access.
 - **Monitoring**:
 - Set up dedicated logging and monitoring for vendor activities.

Incident Response Preparation:

- Create tailored response plans for supply chain compromises.
- Establish clear communication protocols with vendors during incidents.
- Include clauses in contracts requiring vendors to notify you of breaches promptly.

2. DETECT

• MD1. Identify Threat Indicators:

• SIEM Alerts:

- Suspicious access patterns from vendor accounts.
- Unauthorised access attempts to sensitive systems by third-party accounts.
- Endpoint Protection:
 - Malware or tools used for lateral movement originating from thirdparty systems.
- **Network Monitoring**:
 - Anomalous data transfers to vendor networks or external IPs.
- MD2. Identify Risk Factors:
 - **Common Risks**:
 - Exploited software updates from a vendor.

Compromised vendor credentials.

• Company-Specific Risks:

- Loss of sensitive customer or operational data.
- Disruption of critical systems reliant on third-party software.

• MD3. Data Collection:

• Account Analysis:

Investigate vendor account activity.

• Network Analysis:

- Review traffic patterns between your network and vendor systems.
- Log Analysis:
 - Check for unusual activity correlated with vendor-related accounts or IPs.

• MD4. Categorise:

- Types of Supply Chain Attacks:
 - Software Exploitation:
 - Malicious updates or patches from vendors.
 - Credential Abuse:
 - Stolen or compromised vendor credentials used for unauthorised access.
 - Physical Device Compromise:
 - Hardware shipped with malware or backdoors.

• MD5. Is it an Advanced Attack?

• If the attack involves advanced persistence mechanisms or highly sensitive systems, escalate to senior incident response teams and threat intelligence analysts.

• MD6. Triage:

- Assess the scope of impact:
 - Systems affected by the vendor's compromise.
 - Data potentially exfiltrated or modified.

• MD7. Is it a False Positive?

- If verified false, document and close the alert.
- If true, proceed to **Analyse**.

3.ANALYSE

- MA1. Verify:
 - Confirm the vendor has been compromised using:
 - Threat intelligence feeds.
 - Public disclosures or notifications from the vendor.

• MA2. Identify IOCs:

- Collect indicators associated with the vendor compromise, such as:
 - Malicious domains or IPs.
 - Hashes of compromised software files or malware.
- MA3. Investigate Affected Systems:

- Review impacted systems for signs of compromise originating from vendorrelated activity.
- MA4. Collaborate:
 - Contact the vendor for additional details and updates.
 - Share findings and IOCs with internal teams and industry peers, if appropriate.
- MA5. Scan Enterprise:
 - Search for IOCs across the network, endpoints and critical systems.

4. CONTAIN / ERADICATE

- MC1. Contain the Threat:
 - Disable or restrict vendor accounts showing signs of compromise.
 - Block malicious IPs, domains or file hashes linked to the vendor compromise.
 - Isolate affected systems from the network.
- MC2. Eradicate:
 - Remove malicious files, malware or compromised software updates.
 - Patch vulnerabilities exploited during the attack.

MC3. Validate:

• Confirm no further unauthorised access or malicious activity is detected.

5. RECOVER

• MR1. Restore Operations:

- Re-enable vendor access only after the issue has been resolved and additional controls are implemented.
- Update affected systems and software with clean versions.
- Notify internal teams and external stakeholders about the resolution.

6. LESSONS LEARNT

Conduct a Post-Incident Review:

- Evaluate how the vendor compromise occurred and how it propagated into your environment.
- Update vendor risk management policies and incident response plans based on the findings.
- Strengthen monitoring and controls for vendor-related activities.

ZERO-DAY EXPLOITS PLAYBOOK

1. PREPARATION

- Vulnerability Management:
 - Maintain an up-to-date inventory of all software and hardware, including versions and patch status.
 - Monitor trusted vulnerability databases (e.g., CVE, NVD) and vendor advisories for emerging threats.
- Threat Intelligence:
 - Subscribe to feeds from vendors, government agencies and cybersecurity firms specialising in zero-day vulnerabilities.
 - Collaborate with information-sharing communities (e.g., ISACs) to gain early awareness.
- Hardening Systems:
 - Disable unused services and features.
 - Enforce strict application controls using tools like AppLocker or Software Restriction Policies.
 - Implement robust EDR/XDR solutions for anomaly detection.
- Network Segmentation and Access Control:
 - Segregate critical systems from general networks.
 - Enforce least-privilege access policies.
- Incident Response Drills:
 - Simulate zero-day scenarios to test detection and response capabilities.
 - Validate escalation paths and cross-team collaboration.
- Vendor Communication:
 - Establish direct lines of communication with software and hardware vendors for emergency patching guidance.
- Document Security Policies:
 - Ensure incident response, vulnerability management and patch management policies are comprehensive and regularly updated.

2. DETECT

- MD1. Identify Threat Indicators:
 - **SIEM** Alerts:
 - Anomalous application behaviors, such as unexpected service crashes or unusual privilege escalations.
 - EDR/XDR Logs:
 - Detection of code execution in unusual memory regions.
 - Indicators of exploitation, such as buffer overflows or heap sprays.
 - **Network Monitoring**:

- Sudden spikes in outbound traffic or unusual connections to unfamiliar IPs/domains.
- Application Logs:
 - Errors or anomalies indicating exploitation attempts.
- MD2. Identify Risk Factors:
 - Common Risks:
 - Data exfiltration and espionage.
 - Lateral movement to other systems.
 - Company-Specific Risks:
 - Disruption to business-critical operations.
 - Regulatory fines and reputational damage.

MD3. Data Collection:

- Endpoint Analysis:
 - Identify suspicious processes, memory dumps or injected code.
- Network Analysis:
 - Collect traffic data related to suspected C2 communications.
- Log Analysis:
 - Review system logs for anomalies around the time of suspected exploitation.
- MD4. Categorise:
 - Types of Zero-Day Attacks:
 - Remote Code Execution (RCE): Exploits allowing arbitrary code execution.
 - **Privilege Escalation**: Gaining unauthorised system-level access.
 - **Information Disclosure**: Exploits revealing sensitive data.

• MD5. Is it an Advanced Attack?

- If sophisticated techniques such as obfuscation or multi-stage payloads are observed:
 - Escalate to threat intelligence and hunting teams.
 - Notify senior leadership.
- MD6. Triage:
 - Assess scope and impact:
 - Identify affected systems, data compromised and potential lateral movement.

• MD7. Is it a False Positive?

 Validate with additional analysis. If false, close the incident and document findings.

3. ANALYSE

• MA1. Verify:

• Confirm the vulnerability exploited matches behaviors observed.

- MA2. Identify IOCs:
 - Gather and validate:

- Exploit payloads or scripts.
- Domains, IPs and hashes linked to the attack.

MA3. Forensic Analysis:

- Examine impacted systems for:
 - Exploited files or memory artifacts.
 - Evidence of persistence mechanisms.

MA4. Collaborate:

- Share findings with vendors and security communities to assist in patch development.
- MA5. Enterprise-Wide Scan:
 - Search for IOCs across systems and networks to ensure no further compromises.

4. CONTAIN / ERADICATE

• MC1. Contain the Threat:

- Isolate affected systems to prevent lateral movement.
- Block known malicious IPs, domains and hashes using network security tools.
- MC2. Eradicate:
 - Remove malware or persistence mechanisms.
 - Apply interim mitigations (e.g., disable vulnerable features).
- MC3. Validate Remediation:
 - Confirm no residual exploitation or IOCs remain active.

5. RECOVER

- MR1. Restore Operations:
 - Rebuild affected systems from secure backups.
 - Reapply patches or configurations once available.

MR2. Monitor:

• Keep systems under enhanced observation for recurring activity.

6. LESSONS LEARNT

Conduct Post-Incident Review:

- Analyse the attack's lifecycle, including how the zero-day was exploited and mitigated.
- Update policies and playbooks to strengthen defenses against future zeroday exploits.
- Improve threat intelligence sharing and vendor collaboration.

AI-POWERED MALWARE PLAYBOOK

1. PREPARATION

• AI-Specific Threat Intelligence:

- Monitor industry reports and research on emerging AI-powered malware trends.
- Participate in forums and information-sharing platforms to stay informed about the latest tactics.

Advanced Security Solutions:

- Deploy AI/ML-enhanced EDR and NDR tools capable of detecting adaptive and evolving malware.
- Use behavior-based analysis to identify anomalies rather than relying solely on signatures.
- System Hardening:
 - Limit execution of unknown applications using application whitelisting.
 - Enforce strict privilege controls and disable unnecessary AI-enabled features in software.

Incident Response Enhancements:

- Train response teams on AI-powered malware scenarios, including its potential evasion tactics.
- Establish playbooks for detecting and mitigating polymorphic or evolving threats.
- Data Protection and Encryption:
 - Encrypt sensitive data to limit exposure in case of a breach.
 - Regularly back up critical systems and store backups offline.
- Threat Simulation Drills:
 - Simulate AI-powered malware attacks to test detection and response effectiveness.
 - Validate escalation paths and update playbooks based on lessons learned.

1. DETECT

• MD1. Identify Threat Indicators:

- Behavioral Anomalies:
 - Unusual system or network activity patterns that adapt over time.
- EDR Alerts:
 - Rapid changes in malware signatures or behaviors, indicating potential adaptation.
- NDR Tools:
 - Detection of evolving C2 communications using encrypted or covert channels.
- System Logs:

 Unexpected changes in process behavior or privilege escalation attempts.

• MD2. Identify Risk Factors:

- Common Risks:
 - Data exfiltration via adaptive methods.
 - Persistent threats leveraging AI to avoid detection.
- Company-Specific Risks:
 - Brand damage from prolonged malware presence.
 - Operational disruptions due to adaptive malware targeting critical systems.

• MD3. Data Collection:

• Endpoint Analysis:

Capture and analyse malware samples using sandboxes or forensic tools.

• Network Analysis:

 Inspect traffic patterns for signs of AI-driven communication techniques (e.g., dynamic DNS, steganography).

• Memory Dumps:

 Look for signs of AI-enabled decision-making processes in malware payloads.

• MD4. Categorise:

- Types of AI-Powered Malware:
 - **Polymorphic Malware**: Frequently changes its code to evade detection.
 - **Self-Learning Malware**: Adapts based on environment and security configurations.
 - Steganographic Malware: Uses AI to embed malicious code within benign files.

• MD5. Is it an Advanced Attack?

- Escalate to senior analysts if malware demonstrates:
 - Adaptive communication techniques.
 - AI-driven decision-making capabilities.
- MD6. Triage:
 - Assess the malware's impact:
 - Systems affected, data compromised and potential for lateral movement.

• MD7. Is it a False Positive?

• Validate alerts with threat intelligence and additional analysis.

3. ANALYSE

- MA1. Verify:
 - Confirm adaptive behaviors through sandbox testing or manual analysis.
- MA2. Identify IOCs:

- Gather and validate:
 - Malware hashes, C2 domains and suspicious IPs.
 - Indicators of adaptive techniques (e.g., dynamic payload modifications).

• MA3. Reverse Engineer:

- Use tools like Ghidra or IDA Pro to dissect AI-powered malware and understand its decision-making processes.
- MA4. Collaborate:
 - Share findings with vendors and threat intelligence communities.
- MA5. Scan Enterprise:
 - Search for IOCs across endpoints, logs and network traffic to detect further infections.

4. CONTAIN / ERADICATE

• MC1. Contain the Threat:

- Isolate infected systems.
- Block malicious domains, IPs and communication patterns using firewall or DNS filtering.
- MC2. Eradicate:
 - Terminate malicious processes and remove associated files.
 - Implement stricter execution policies to prevent re-infection.

MC3. Validate Remediation:

• Scan all systems to ensure no traces of malware remain.

5. RECOVER

- MR1. Restore Operations:
 - Rebuild affected systems from clean backups.
 - Reassess security controls to prevent recurrence.

• MR2. Enhanced Monitoring:

• Increase vigilance for evolving threats using AI/ML-based security solutions.

6. LESSONS LEARNT

- Post-Incident Review:
 - Analyse the malware's AI capabilities and the effectiveness of the response.
 - Update detection and response playbooks with findings.
 - Enhance training for security teams on handling AI-powered threats.

DEEPFAKE SOCIAL ENGINEERING PLAYBOOK

1. PREPARATION

• Training and Awareness:

- Conduct regular employee training on identifying deepfake threats, including examples of audio and video manipulation.
- Emphasise verification procedures, such as multi-channel communication (e.g., confirming requests via phone if received by email).

Security Policies:

- Mandate strict authentication protocols for sensitive requests, such as dual approval for financial transactions.
- Enforce the use of secure communication channels for official interactions.

Technology Solutions:

- Implement deepfake detection tools and AI-based fraud monitoring solutions.
- Use biometric authentication systems that are resistant to manipulation.
- Incident Response Enhancements:
 - Prepare response templates for potential deepfake incidents, such as public communication or employee alerts.
 - Create a decision tree for escalating suspected deepfake threats.

Threat Intelligence:

- Monitor advancements in deepfake technologies and track their use in cyberattacks.
- Share intelligence on observed techniques with industry peers and threatsharing platforms.

• Pretext Simulation Drills:

 Conduct phishing simulations involving potential deepfake scenarios to test employee response.

2. DETECT

- MD1. Identify Threat Indicators:
 - Audio or Video Irregularities:
 - Delayed or unnatural lip-syncing, inconsistent voice tonality or artifacts in video feeds.
 - Suspicious Requests:
 - Uncharacteristic urgency in requests from high-level executives.
 - Behavioral Red Flags:
 - Unusual phrasing or deviations from normal communication patterns.
- MD2. Verify Authenticity:

- Confirm via secondary communication methods (e.g., direct phone calls or face-to-face confirmation).
- Use tools like Sensity or Microsoft Video Authenticator to validate audio or video authenticity.
- MD3. Data Collection:
 - Metadata Analysis:
 - Review email headers, timestamps and file properties for anomalies.
 - Network Logs:
 - Check for external access to video conferencing or audio systems.
- MD4. Categorise:
 - Types of Deepfake Attacks:
 - **Impersonation**: High-level executives requesting sensitive actions.
 - **Blackmail**: Threats involving manipulated audio/video content.
 - Social Engineering: Manipulated audio to deceive employees.
- MD5. Is it a Sophisticated Threat?
 - If the deepfake bypasses detection tools or uses advanced methods, escalate to senior analysts.
- MD6. Triage:
 - Assess the impact:
 - Determine if any sensitive information has been divulged.
 - Identify targeted individuals and the scope of the attack.
- MD7. Is it a False Positive?
 - If proven legitimate, document the findings and close the incident.

3.ANALYSE

- MA1. Verify Incident Scope:
 - Cross-check logs, emails and communications to determine the attack vector.
- MA2. Identify IOCs:
 - Validate suspicious files or communications using tools like VirusTotal or Maltego.
- MA3. Reverse Engineer:
 - Analyse deepfake audio/video using forensic tools to understand the source and methods used.
- MA4. Collaborate:
 - Share findings with security vendors and intelligence-sharing networks.
- MA5. Scan Enterprise:
 - Search for signs of similar deepfake attempts across the organisation.

4. CONTAIN / ERADICATE

• MC1. Contain the Threat:

- Block communication from identified sources (e.g., spoofed emails or phone numbers).
- Temporarily disable affected accounts or communication channels.

• MC2. Eradicate:

- Remove or block malicious files and revoke any unauthorised access.
- Strengthen affected protocols and processes to prevent reoccurrence.

MC3. Validate:

- Ensure all traces of the attack are mitigated.
- Test deepfake detection tools to confirm proper functioning.

5. RECOVER

- MR1. Restore Confidence:
 - Notify affected parties of resolved threats and ensure transparent communication.
 - Provide updated training and guidelines to employees.

• MR2. Technology Updates:

• Upgrade detection tools and reinforce authentication mechanisms.

6. LESSONS LEARNT

- Post-Incident Review:
 - Analyse the effectiveness of deepfake detection and response.
 - Update training materials and playbooks with lessons learned.
 - Identify gaps in processes and deploy solutions to address them.

QUANTUM COMPUTING THREATS PLAYBOOK

1. PREPARATION

- Understand Quantum Risks:
 - Train security teams on quantum computing and its potential impact on cryptography.
 - Evaluate the organisation's cryptographic landscape to identify vulnerabilities to quantum decryption.

Cryptographic Inventory:

- Maintain a comprehensive list of encryption methods and keys in use.
- Identify legacy cryptographic protocols (e.g., RSA, ECC) that are vulnerable to quantum attacks.
- Adopt Quantum-Resistant Cryptography:
 - Transition to quantum-safe algorithms as recommended by NIST's Post-Quantum Cryptography (PQC) standards.
 - Begin hybrid implementations combining classical and quantum-resistant cryptography to ease the transition.

• Secure Communication Channels:

- Deploy secure key exchange mechanisms resistant to quantum threats (e.g., lattice-based cryptography).
- Implement forward secrecy for encrypted communications to prevent future decryption.
- Vendor Assessment:
 - Collaborate with vendors to ensure they are adopting quantum-safe technologies.
 - Require third-party vendors to disclose their cryptographic practices.
- Sœnario Simulations:
 - Conduct tabletop exercises simulating quantum decryption threats, focusing on data breaches and cryptographic failures.
- Threat Intelligence Monitoring:
 - Track advancements in quantum computing capabilities and monitor industry trends.
 - Watch for early indicators of potential quantum decryption tools.
- Data Classification and Prioritisation:
 - Identify and categorise sensitive data based on its exposure risk and encryption strength.

1. DETECT

- MD1. Identify Indicators of Compromise (IOCs):
 - Cryptographic Failures:
 - Sudden decryption of encrypted files or traffic.

- Unauthorised access to encrypted databases.
- Anomalous Network Activity:
 - Increased computational power in network communications indicating potential quantum decryption attempts.
- MD2. Monitor for Quantum Tools:
 - Observe for emerging tools or platforms leveraging quantum computing for cryptographic analysis.
- MD3. Data Collection:
 - Encryption Logs:
 - Review logs for anomalies in encryption and decryption operations.
 - Network Traffic:
 - Monitor for brute-force decryption attempts on encrypted communications.

• MD4. Categorise Quantum Threats:

- Identify threats as:
 - Cryptographic Attacks: Breaking current encryption.
 - Data Harvesting: Storing encrypted data for future quantum decryption.
- MD5. Is it a Quantum Threat?
 - Confirm with advanced analysis tools if anomalous activity suggests quantum decryption.
- MD6. Triage:
 - Assess the scope of the threat:
 - Data at risk.
 - Affected systems.
 - Potential long-term impact.

• MD7. Is it a False Positive?

• If confirmed as false, document findings and close the case. If true, escalate to senior analysts.

3.ANALYSE

- MA1. Verify Incident Scope:
 - Cross-check logs, encryption protocols and threat intelligence sources.
- MA2. Identify IOCs:
 - Use tools like Wireshark, Seek and Maltego to analyse network traffic and cryptographic anomalies.
- MA3. Reverse Engineer:
 - Investigate the methods used in suspected quantum-based attacks to determine the cryptographic weaknesses exploited.
- MA4. Collaborate:
 - Share findings with government agencies, industry peers and cryptographic standard bodies.
- MA5. Enterprise Scan:

 Search systems for similar vulnerabilities and potential data harvesting activities.

4. CONTAIN / ERADICATE

- MC1. Contain the Threat:
 - Disable vulnerable cryptographic protocols on affected systems.
 - Isolate compromised networks and assets.
- MC2. Mitigation:
 - Apply immediate patches or upgrades to affected cryptographic tools.
 - Re-encrypt sensitive data with quantum-safe algorithms.

MC3. Validate:

- Verify the integrity of systems and data after containment.
- Conduct penetration testing to ensure vulnerabilities are addressed.

5. RECOVER

• MR1. Restore Operations:

- Reintegrate systems into the production environment after thorough validation.
- Restore data from secure, quantum-safe backups if necessary.

MR2. Strengthen Defenses:

- Accelerate the transition to post-quantum cryptographic standards.
- Implement quantum-resilient key management systems.

6. LESSONS LEARNT

Post-Incident Review:

- Evaluate the effectiveness of quantum-resilient preparations and response efforts.
- Identify areas for improvement in encryption practices and incident response processes.
- Update the playbook with new insights and ensure alignment with evolving quantum-safe standards.

IOT VULNERABILITIES PLAYBOOK

1. PREPARATION

- Inventory and Asset Management:
 - Maintain an up-to-date inventory of all IoT devices within the network, including their make, model, firmware version and purpose.
 - Categorise devices based on criticality and sensitivity of data they handle.
- IoT Security Policies:
 - Establish IoT-specific security policies, such as requiring strong, unique passwords and disabling unused features.
 - Implement network segmentation to isolate IoT devices from critical infrastructure.
- Firmware and Patch Management:
 - Regularly update IoT device firmware and apply patches provided by manufacturers.
- Secure Configuration:
 - Disable default credentials and unnecessary services.
 - Enable secure communication protocols (e.g., TLS) and disable unsecured protocols (e.g., Telnet).

• Monitoring and Logging:

- Enable logging on IoT devices to track activity and identify anomalies.
- Integrate IoT logs with SIEM for centralised monitoring.
- Threat Intelligence:
 - Stay updated on vulnerabilities and attack trends affecting IoT devices.
- Employee Awareness:
 - Train employees to recognise and report suspicious IoT-related activities or device malfunctions.

2. DETECT

• MD1. Identify Indicators of Compromise (IOCs):

• Unusual Network Traffic:

- Unexpected traffic originating from IoT devices, especially to unfamiliar IP addresses.
- **Device Behavior**:
 - Sudden reboots, unresponsive devices or unauthorised configuration changes.
- Credential Abuse:
 - Multiple failed login attempts, indicating potential brute-force attacks.
- MD2. Monitor for Exploitation:

- Use intrusion detection systems (IDS) to monitor network activity for known IoT attack patterns.
- MD3. Data Collection:
 - Device Logs: Review logs for anomalous commands or unauthorised access attempts.
 - **Network Traffic Analysis:** Use tools like Wireshark or Seek to analyse traffic from IoT devices.
- MD4. Categorise Threats:
 - Determine if the anomaly is related to:
 - Botnet activity (e.g., DDoS attacks).
 - Unauthorised data access or exfiltration.
 - Malware infection.

• MD5. Validate IOCs:

• Cross-reference suspicious activity with threat intelligence sources.

3. ANALYSE

- MA1. Scope the Incident:
 - Identify affected devices, compromised data and the potential impact on operations.
- MA2. Identify Exploitation Method:
 - Investigate how the vulnerability was exploited (e.g., outdated firmware, weak credentials).
- MA3. Reverse Engineer Attacks:
 - Analyse malware or exploit payloads using tools like IDA Pro or Cuckoo Sandbox to understand their behavior.
- MA4. Collaboration:
 - Share findings with the IoT device manufacturer and peers in the industry for coordinated mitigation efforts.

• MA5. Broader Analysis:

• Scan for similar vulnerabilities across all IoT devices within the network.

4. CONTAIN / ERADICATE

- MC1. Isolate Compromised Devices:
 - Disconnect affected IoT devices from the network to prevent further spread of the attack.
- MC2. Apply Fixes:
 - Patch vulnerabilities or upgrade firmware for affected devices.
 - Reset devices to factory settings if necessary and reconfigure securely.
- MC3. Strengthen Defenses:
 - Change device passwords and enforce multi-factor authentication (MFA) where possible.
 - Block known malicious IPs or domains in network firewalls.

• MC4. Verify Containment:

• Monitor the network to ensure no residual malicious activity.

5. RECOVER

- MR1. Restore Normal Operations:
 - Reinstate affected devices into the network only after thorough validation and testing.
 - Recover any compromised data from secure backups.
- MR2. Enhance IoT Security:
 - Implement additional security measures, such as device-specific firewalls or access controls.
 - Regularly review and update IoT security policies.

6. LESSONS LEARNT

• Post-Incident Review:

- Document the incident, including root cause, timeline, response efforts and outcomes.
- Identify gaps in IoT security practices and update the playbook accordingly.

Future Mitigation:

- Collaborate with IoT manufacturers to address systemic vulnerabilities.
- Deploy automated tools for continuous IoT vulnerability scanning.

INSIDER THREATS PLAYBOOK

1. PREPARATION

- Access Management:
 - Enforce least privilege principles: limit access to sensitive data and systems to only those who need it.
 - Implement role-based access controls (RBAC).
- Policies and Training:
 - Establish clear policies on acceptable use, data handling and incident reporting.
 - Conduct regular security awareness training, emphasising the risks of insider threats.
- Monitoring and Logging:
 - Deploy user activity monitoring tools (e.g., User Behavior Analytics UBA).
 - Enable detailed logging for critical systems, including file access, email activity and network connections.
- Background Checks:
 - Conduct thorough pre-employment screenings for employees and contractors.
- Incident Response Preparation:
 - Predefine response protocols for suspected insider threats, including escalation paths and containment strategies.
 - Maintain an up-to-date list of internal and external stakeholders for rapid communication.
- Threat Intelligence:
 - Monitor industry-specific trends and tactics used in insider threat cases.

2. DETECT

• MD1. Identify Indicators of Insider Threats:

• Anomalous Behavior:

- Unusual access patterns, such as accessing systems or data outside of work hours.
- Attempts to access data or systems beyond the user's role or need.
- Performance Issues:
 - Increased complaints about system performance, indicating potential data exfiltration.
- Behavioral Changes:
 - Sudden changes in employee behavior, such as disengagement or unexplained absences.
- MD2. Monitoring Tools:
 - UBA systems for detecting deviations from normal user behavior.

• DLP (Data Loss Prevention) tools to monitor for sensitive data exfiltration.

• MD3. Data Collection:

- Analyse:
 - Logs from file servers, email systems and cloud applications.
 - USB and removable media usage logs.
- Correlate activity using SIEM to identify patterns of abuse or negligence.

• MD4. Categorise Threats:

• **Types of Insider Threats**:

- Malicious: Intentional actions to harm the organisation.
 - Negligent: Unintentional actions compromising security (e.g., accidental data exposure).
 - Compromised: Employees coerced by external actors.

3. ANALYSE

- MA1. Scope the Incident:
 - Identify the affected systems, data accessed and whether the insider acted maliciously or negligently.
- MA2. Examine Logs and Activities:
 - Review logs to pinpoint unauthorised or suspicious activities.
 - Analyse email communications for signs of data sharing or external coordination.
- MA3. Verify Intent:
 - Interview employees or contractors to understand the context of their actions.
 - Cross-check their activities against established access policies and permissions.
- MA4. Collaboration:
 - Work with HR, legal and management teams to determine intent and appropriate next steps.

4. CONTAIN / ERADICATE

- MC1. Contain Insider Actions:
 - Immediately revoke or restrict the individual's access to systems and sensitive data.
 - Temporarily isolate affected systems to prevent further damage or data exfiltration.
- MC2. Investigate and Remediate:
 - If the threat was negligent, provide retraining and implement stricter controls.
 - If malicious, involve legal and law enforcement teams to pursue necessary actions.
- MC3. Validate Security:

- Perform a comprehensive audit to ensure no residual threats exist.
- Update access permissions and monitor systems for similar behavior.

5. RECOVER

- MR1. Resume Normal Operations:
 - Reinstate affected systems after thorough validation.
 - If applicable, restore deleted or compromised data from backups.

MR2. Strengthen Defenses:

- Refine access controls and enforce stricter monitoring policies.
- Deploy additional security tools, such as advanced DLP or identity management solutions.

6. LESSONS LEARNT

- Post-Incident Review:
 - Document the incident's timeline, root cause and resolution.
 - Identify process and policy gaps that allowed the incident to occur.
- Enhance Security Posture:
 - Update insider threat detection tools and policies based on findings.
 - Schedule additional security awareness training, focusing on insider threats.

Proactive Threat Hunting:

 Regularly review activity logs and access patterns to identify potential insider threats early.

CLOUD SECURITY MISCONFIGURATIONS PLAYBOOK

1. PREPARATION

- Cloud Security Policies:
 - Define clear policies for configuring and managing cloud services.
 - Enforce compliance with industry standards like CIS Benchmarks for cloud security.
- Access Controls:
 - Implement role-based access control (RBAC) and the principle of least privilege.
 - Use Multi-Factor Authentication (MFA) for accessing cloud resources.
- Configuration Management:
 - Use Infrastructure as Code (IaC) tools like Terraform or CloudFormation to manage configurations.
 - Maintain an inventory of cloud resources and their configurations.
- Monitoring and Logging:
 - Enable logging and monitoring features, such as AWS CloudTrail, Azure Monitor or Google Cloud Logging.
 - Use centralised SIEM solutions to analyse cloud activity logs.
- Training and Awareness:
 - Provide regular training for cloud administrators to ensure they understand best practices and common pitfalls.
- Automated Security Tools:
 - Deploy tools like AWS Config, Azure Security Center or Prisma Cloud for continuous configuration assessments.

2. DETECT

- MD1. Identify Indicators of Misconfigurations:
 - Open Access Issues:
 - Publicly accessible storage buckets (e.g., AWS S3, Azure Blob).
 - Over-permissive IAM roles allowing unintended actions.
 - Unencrypted Data:
 - Sensitive data stored without encryption at rest or in transit.
 - Audit Failures:
 - Logs or alerts indicating suspicious activity or changes to configurations.
- MD2. Monitor Key Areas:
 - Storage buckets, databases and virtual machines for public exposure.
 - Network configurations, such as overly permissive security group rules.
 - Access logs for unusual or unauthorised activities.
- MD3. Utilise Automated Tools:

- Cloud-native tools like AWS Trusted Advisor, Azure Defender or Google Security Command Center.
- Third-party tools like Tenable, Qualys or Wiz for broader cloud misconfiguration detection.

3.ANALYSE

- MA1. Scope the Misconfiguration:
 - Identify which resources are affected and the potential data exposed.
 - Determine the root cause, such as human error, lack of oversight or flawed automation scripts.

MA2. Assess Impact:

- Quantify the data exposed and the risk to the organisation.
- Identify whether the misconfiguration has been exploited (e.g., unauthorised access or data downloads).

• MA3. Validate Logs and Alerts:

- Review logs to confirm unauthorised access attempts or changes to configurations.
- Correlate with threat intelligence to assess the likelihood of exploitation.

• MA4. Engage Relevant Teams:

 Coordinate with cloud administrators, security teams and legal/compliance teams as needed.

4. CONTAIN / ERADICATE

- MC1. Secure Misconfigured Resources:
 - Immediately correct the misconfiguration (e.g., make the storage bucket private or restrict overly permissive IAM roles).
 - Revoke unauthorised access or over-permissive credentials.
- MC2. Validate Security Controls:
 - Enable encryption for sensitive data at rest and in transit.
 - Update network security group rules to minimise exposure.

• MC3. Conduct Forensic Analysis:

- Analyse logs for signs of exploitation during the period of misconfiguration.
- Capture any evidence of unauthorised access or data theft for further investigation.

5. RECOVER

- MR1. Restore Configurations:
 - Ensure all affected resources are securely reconfigured following best practices.
 - Use automated tools to validate configuration compliance.
- MR2. Notify Stakeholders:

- Inform affected parties, such as clients or regulators, if sensitive data was exposed.
- Provide transparency about the steps taken to resolve the issue.
- MR3. Conduct Post-Incident Testing
 - Perform penetration tests or red-team exercises to validate the security of the cloud environment.

6. LESSONS LEARNT

- Post-Incident Review:
 - Document the incident, including root cause analysis and resolution steps.
 - Share findings with stakeholders and incorporate lessons into training.
- Strengthen Configuration Management:
 - Use automated CI/CD pipelines to deploy secure configurations.
 - Regularly audit cloud configurations for compliance and vulnerabilities.
- Enhance Monitoring and Response:
 - Set up alerts for common misconfigurations and unauthorised activities.
 - Train incident response teams on cloud-specific threats and resolutions.

ADVANCED PERSISTENT THREATS (APTs) PLAYBOOK

1. PREPARATION

- APTs Awareness and Training:
 - Provide regular training for employees on recognising signs of APT activity, including spear-phishing attempts and unusual behavior.
 - Conduct workshops to educate IT staff about APT tactics, techniques and procedures (TTPs).
- Network Segmentation:
 - Implement strong segmentation to limit the movement of APT actors within the network.
 - Ensure that sensitive data and critical systems are isolated from the general network.
- Endpoint Detection and Response (EDR) Implementation:
 - Ensure that EDR tools are in place on all endpoints to monitor for advanced, subtle APT indicators (e.g., living-off-the-land techniques, credential dumping).
 - Configure alerts for unusual user or process behaviors indicative of an APT attack (e.g., large-scale data movement, lateral movement).
- Threat Intelligence Feeds:
 - Integrate global and industry-specific threat intelligence feeds to stay up-todate on the latest APT tactics and tools.
 - Share and receive threat intelligence with trusted partners and government entities for a broader understanding of emerging threats.
- Incident Response Plan:
 - Develop a detailed incident response plan specifically for APTs, including coordination between different teams (e.g., IT, legal, public relations).
 - Designate a response team that specialises in handling advanced attacks and ensure that all team members are familiar with the playbook.
- Red Team Exercises:
 - Conduct simulated APT scenarios to test the organisation's readiness and identify gaps in detection and response capabilities.

2. DETECT

- MD1. Identify Indicators of Compromise (IOCs):
 - **SIEM Alerts**:
 - Unusual authentication attempts or login patterns (e.g., failed logins followed by successful logins).
 - Suspicious lateral movement or privilege escalation.
 - Evidence of tools commonly used in APT campaigns (e.g., Mimikatz, Cobalt Strike).

• Network Traffic Anomalies:

- Communication with known APT infrastructure (e.g., C2 servers, command-and-control domains).
- Unusual outbound traffic or data exfiltration patterns.

• File Integrity Monitoring:

- Detection of new or altered files, especially in sensitive directories.
- Changes to critical system configurations or registry settings.

MD2. Identify Threat Actor TTPs:

- Review MITRE ATTCCK framework for known APT techniques and tactics used by specific threat actor groups.
- Monitor for behavior indicative of known APT groups, including spearphishing emails, use of legitimate administrative tools for malicious purposes and living-off-the-land techniques.

• MD3. Monitor for Low-and-Slow Attacks:

- APTs often operate slowly and stealthily to avoid detection. Set up monitoring for long-term, low-frequency activity (e.g., incremental data exfiltration).
- Look for irregularities over extended periods, such as dormant backdoors that activate later or slow data gathering.

3. ANALYSE

• MA1. Confirm IOC Matches:

• IOC Validation:

- Use tools like VirusTotal, Hybrid Analysis and Threatminer to validate IOCs (IPs, hashes, domains) against known databases.
- Cross-check network traffic, file hashes and suspicious domain names against threat intelligence sources.

• MA2. Evaluate the Scope of the Attack:

- Identify which systems or users are affected. Look for signs of lateral movement or other compromised accounts that indicate a broader breach.
- Conduct forensic analysis of endpoint activity to map out attacker behavior and identify tools used.

• MA3. Correlate with Threat Intelligence:

- Compare attack patterns with known APT groups and their historical activity (e.g., APT28, APT29, Cozy Bear, Charming Kitten).
- Analyse metadata, TTPs and known techniques to identify potential attribution to a specific threat actor group.

• MA4. Perform Root Cause Analysis:

- Determine the initial entry point (e.g., spear-phishing email, exploit of an unpatched vulnerability) and how the attacker gained access to the network.
- Identify any vulnerabilities or gaps in security that were exploited, such as unpatched systems or weak access controls.
- MA5. Escalate if Necessary:

- If the attack appears to be part of a broader APT campaign, escalate to a specialised incident response team, threat hunting team or external experts.
- Notify law enforcement if the attack is determined to be state-sponsored or part of a larger geopolitical threat.

4. CONTAIN / ERADICATE

- MC1. Isolate Compromised Systems:
 - Use EDR tools to isolate infected machines and prevent further lateral movement within the network.
 - Block or contain traffic to C2 servers and known malicious IP addresses.
- MC2. Terminate Malicious Processes:
 - Identify and terminate active malware or backdoor processes. Use memory analysis to track and kill hidden processes or payloads.
 - Revoke any compromised credentials and reset administrative passwords.
- MC3. Remove Persistence Mechanisms:
 - Check for and remove any persistence mechanisms used by the attacker (e.g., scheduled tasks, registry keys or backdoor user accounts).
 - Ensure that no traces of the attack are left behind in the form of hidden files, malware or modifications to system settings.
- MC4. Strengthen Security Posture:
 - Patch vulnerabilities exploited during the attack and harden systems to prevent further compromises.
 - Ensure that multi-factor authentication (MFA) is enabled for all critical access points.

5. RECOVER

- MR1. Restore Systems and Data:
 - Reimage infected systems and restore data from secure backups to ensure no malicious remnants remain.
 - Validate that the recovery process does not reintroduce any malware or vulnerabilities.
- MR2. Test for Re-entry:
 - Conduct penetration tests or red-team exercises to verify that the APT group cannot re-enter the network using the same methods.
 - Validate that all system and network defenses are functioning as intended.
- MR3. Communicate with Stakeholders:
 - Notify internal and external stakeholders, including clients, vendors and regulators, if sensitive data was exfiltrated or compromised.
 - Provide updates on the status of the investigation and any preventive measures taken to address the APT.

6. LESSONS LEARNT

Post-Incident Review:

- Conduct a thorough review of the attack, identifying strengths and weaknesses in the detection, containment and eradication processes.
- Update incident response plans and security controls based on lessons learned.
- Improve Detection Capabilities:
 - Enhance detection mechanisms for low-and-slow APT activity, including better network traffic analysis and file integrity monitoring.
 - Implement advanced behavior analytics tools to detect anomalies associated with APT TTPs.
- Collaborate with Industry Peers:
 - Share findings with industry peers and threat intelligence communities to better understand emerging APT tactics and tools.
 - Contribute to threat intelligence feeds and collaborate with law enforcement when necessary.

• Update Security Infrastructure:

- Invest in next-gen endpoint protection, threat hunting capabilities and continuous monitoring systems to proactively detect future APTs.
- Increase training efforts to raise awareness about APTs across the organisation.

CREDENTIAL STUFFING ATTACKS PLAYBOOK

1. PREPARATION

Password Hygiene and Policies:

- Enforce strong password policies, requiring complex, unique passwords for all user accounts.
- Educate users about the dangers of reusing passwords across multiple sites and encourage the use of password managers.

Multi-Factor Authentication (MFA):

- Require MFA for all critical systems and applications, especially for administrative accounts and accounts containing sensitive data.
- Configure MFA methods that are resistant to bypassing, such as hardware tokens or mobile app-based authenticators.

Monitoring and Detection Setup:

- Implement robust account login monitoring using SIEM solutions to track failed login attempts, especially from unusual IP addresses or locations.
- Set up thresholds for failed login attempts and configure alerts for abnormal spikes in login failures.

• Rate Limiting and CAPTCHA:

- Enable rate limiting to restrict the number of login attempts within a specific time frame, preventing attackers from brute-forcing credentials.
- Implement CAPTCHA challenges on login pages to thwart automated login attempts.

• Threat Intelligence Feeds:

- Subscribe to breach notification services and threat intelligence feeds that provide data on compromised credentials and known botnet IP addresses.
- Regularly update blacklists to block IP addresses associated with known attack sources.

• Red Team and Penetration Testing:

- Conduct regular penetration tests to simulate credential stuffing attacks and identify weaknesses in authentication systems.
- Test the effectiveness of MFA, rate limiting and CAPTCHA systems against real-world credential stuffing tactics.

2. DETECT

• MD1. Monitor Failed Login Attempts:

• **SIEM Alerts**:

- Alert on unusually high numbers of failed login attempts from the same IP address or geographical region.
- Track failed login attempts that match usernames or email addresses across different platforms.

- Watch for repeated login failures from various IP addresses attempting to access a single account.
- MD2. Detect Abnormal IP Addresses and Geographies:
 - Use geolocation data to identify logins from unexpected regions, especially when an account typically logs in from a different location.
 - Detect the use of proxy or VPN services to mask the true origin of login attempts.
- MD3. Recognise Credential Reuse:
 - Cross-reference login attempts with known compromised password databases (e.g., HaveIBeenPwned) to identify if an account is using a stolen password combination.
 - Set up alerts when accounts show a pattern of matching credentials that have appeared in previous breaches.
- MD4. Analyse Account Lockouts and Suspicious Activity:
 - Trigger alerts for account lockouts after a predefined number of failed login attempts.
 - Monitor for accounts that are locked after repeated failed login attempts, indicating potential automated attacks.

3.ANALYSE

• MA1. Confirm Indicators of Credential Stuffing:

- IOCs:
 - Numerous login attempts with different combinations of usernames and passwords within a short period.
 - Login attempts from known bad IP addresses or proxies.
- Validate failed login attempts against breached credential databases (e.g., checking if login attempts match known leaked credentials).
- MA2. Investigate Suspicious Accounts:
 - Review login history and behaviors for accounts experiencing high failure rates. Look for patterns indicating they are targets of credential stuffing.
 - Examine account activities after successful logins from unauthorised sources to determine if any unusual actions or access occurred.
- MA3. Review CAPTCHA or Rate Limiting Efficacy:
 - Verify that CAPTCHA or rate limiting is being correctly triggered after a threshold number of failed login attempts.
 - Check if the attacks are bypassing rate-limiting mechanisms or CAPTCHA challenges (e.g., through botnets or CAPTCHA solving services).
- MA4. Correlate with Threat Intelligence:
 - Cross-reference observed attack patterns (e.g., IP addresses, behavior) with known credential stuffing campaigns.
 - Analyse trends in attack attempts based on recent data from threat intelligence sources.
- MA5. Assess the Impact of the Attack:

- Determine if any accounts were successfully compromised and identify the scope of the breach.
- Evaluate any exfiltration of data or other malicious activity linked to the attack.

4. CONTAIN / ERADICATE

- MC1. Block Malicious IP Addresses:
 - Use firewall rules or SIEM to automatically block IP addresses exhibiting suspicious activity, such as high rates of failed login attempts.
 - Add known botnet IP addresses and proxy servers to the blocklist to prevent further login attempts.
- MC2. Implement Account Lockouts and Reset Credentials:
 - Lock out accounts that are under attack and reset their passwords to prevent unauthorised access.
 - Notify affected users to change their passwords and enforce strong authentication measures.
- MC3. Enforce Multi-Factor Authentication (MFA):
 - Immediately enforce MFA for all user accounts, especially for those potentially compromised during the attack.
 - Implement additional layers of authentication for accounts that were targeted or affected.
- MC4. Strengthen Authentication Systems:
 - Tighten rate-limiting mechanisms and CAPTCHA rules to prevent automated login attempts.
 - Implement bot detection tools that use machine learning to detect automated login behavior.
- MC5. Disable Stolen Credentials:
 - If possible, disable accounts that are suspected to be using stolen credentials to prevent further unauthorised access.
 - Use breach notification services to identify and protect other accounts that may be impacted by the same stolen credentials.

5. RECOVER

- MR1. Restore Access for Legitimate Users:
 - Ensure that legitimate users can regain access to their accounts by resetting their credentials and enabling MFA.
 - Provide support for users who are locked out or unable to access their accounts.
- MR2. Investigate Data Breach Impact:
 - If data was accessed or exfiltrated, conduct a detailed investigation to determine the scope of the breach.

- Notify users if their data was compromised and provide them with necessary steps to secure their accounts.
- MR3. Perform Root Cause Analysis:
 - Assess how the credential stuffing attack bypassed current security measures (e.g., weak rate limiting or inadequate CAPTCHA).
 - Analyse logs, review attack patterns and identify areas for improvement in the authentication system.
- MR4. Test Recovery Procedures:
 - Ensure that all security measures are functional after the attack, including account lockout systems, CAPTCHA and rate limiting.
 - Verify that no accounts remain compromised and that all systems are secure before restoring full access.

6. LESSONS LEARNED

Post-Incident Review:

- Hold a meeting with relevant stakeholders (security, IT, user support) to review the response to the credential stuffing attack.
- Identify areas where response time could be improved and whether detection capabilities need to be enhanced.
- Improve Detection and Prevention Mechanisms:
 - Update and improve rate-limiting rules to ensure they trigger faster and more effectively for login attempts.
 - Enhance CAPTCHA and bot-detection mechanisms to prevent further automation-based attacks.
- Update Password and Authentication Policies:
 - Consider implementing passwordless authentication methods or requiring stronger passwords for high-value accounts.
 - Enforce stronger password policies and more frequent password changes, especially for users with access to critical systems.
- Increase User Awareness and Education:
 - Continue educating users on the risks of credential stuffing and the importance of using strong, unique passwords for each service.
 - Provide guidance on setting up MFA and encourage its use across all accounts.

FILELESS MALWARE PLAYBOOK

1. PREPARATION

• Create and Maintain a List of

- All software and applications approved for use in the organisation.
 - Helps detect unauthorised tools and prevent misuse.
- Users with access to tools that can execute code in memory (e.g., PowerShell, WMI, scripts).

• Email Templates

- Notify employees about suspicious script activities or memory-based attacks.
- Communicate with internal teams regarding proactive measures (e.g., disabling macros by default).
- Notify external vendors if vulnerabilities in their products are exploited.

• Ensure that:

- Endpoint Detection and Response (EDR) solutions are capable of monitoring script activities.
- Detection exists for unusual behaviours like:
 - PowerShell commands without files.
 - Processes launching from memory.
 - Usage of tools like MSHTA, BITSAdmin or CertUtil.
- Network segmentation limits critical systems' exposure.

Perform Firedrill

- Validate Playbook functionality upon publication and annually.
- Test scenarios like:
 - Memory-only attacks.
 - Exploitation of trusted processes like PowerShell or WMI.
- Ensure escalation paths and contact lists are up to date.

Review Threat Intelligence

- Investigate trends in fileless malware attacks.
- Analyse new tactics targeting the sector and brands.
- Monitor CVEs exploited by attackers for fileless methods.

Asset Inventory

- Maintain a list of:
 - Endpoints, servers and network ranges.
 - Software used in the environment (version details).
 - Owners and pre-authorised actions.
- Include tools that allow memory execution (e.g., scripting frameworks).

2. DETECT

MD1. Identify Threat Indicators

Alerts

- o SIEM
 - Anomalous PowerShell or WMI activity.
 - Memory injections.
- EDR
 - Detection of unsigned or obfuscated scripts.
- DNS logs
 - Connections to command-and-control (C2) domains.
 - Network monitoring tools
 - Unusual traffic patterns.

Notifications

0

- Internal users reporting performance issues or crashes.
- External vendors reporting vulnerabilities or suspicious activity.

MD2. Identify Risk Factors

Common Risks

- Credential theft.
- Network traversal and lateral movement.
- Data exfiltration.

Company-Specific Risks

- Reputational damage from breaches.
- Financial impact from service disruption or regulatory penalties.

MD3. Data Collection

Processes

- Analyse processes that triggered detections
 - (e.g., powershell.exe, wmic.exe).
- Identify parent-child process relationships.
- Memory Analysis
 - Capture memory dumps to identify scripts or commands executed.
- Network
 - Identify domains, IPs or ports involved in C2 communications.

MD4. Categorise

• Types of Fileless Attacks

- Memory-only malware.
- Living-off-the-land binaries (LOLBins).
- Script-based attacks (e.g., PowerShell, VBScript).
- Malicious WMI scripts.

MD5. Is it an Advanced Attack?

- If the attack uses obfuscated scripts or advanced memory manipulation:
 - Escalate to the Threat Hunting team.
 - Notify senior analysts.

MD6. Triage

Determine Impact and Scope

- Affected hosts.
- Any lateral movement.
- Potential data exfiltration.

MD7. Is it a False Positive?

- Document and close if false.
- If true: escalate and proceed to Analyse phase.

3.ANALYSE

MA1. Verify

• Double-check logs for unusual behaviours (e.g., script execution, network anomalies).

MA2. Identify IOCs

- Use tools like VirusTotal, Hybrid Analysis and URLScan to validate:
 - Scripts.
 - Domains.
 - \circ IPs.

MA3. Extract IOCs

- Analyse captured memory for:
 - Scripts or commands.
 - Injected processes.
- Analyse network connections for C2 communications.

MA4. Submit to Partners

• Provide samples to security vendors if novel techniques are observed.

MA5. Scan Enterprise

- Update endpoint rules to detect similar behaviours.
- Search endpoints for IOCs and review network traffic for lateral movement.

4. CONTAIN / ERADICATE MC1. Contain Affected Hosts

- Use EDR to isolate affected systems.
- Block suspicious domains and IPs.
- Blackhole DNS for identified C2 domains.

MC2. Eradicate

- Terminate malicious processes.
- Remove any registry modifications or scripts left by the malware.

MC3. Validate

- Ensure all IOCs are removed.
- Rescan systems and networks for residual traces.

5. RECOVER

MR1. Restore Operations

- Reimage affected systems.
- Restore data from secure backups.

- Conduct a post-incident review to enhance:
 - Detection capabilities.
 - Response strategies.
- Update Playbook based on findings.

ROGUE ACCESS POINT (ROGUE AP) ATTACK PLAYBOOK

1. PREPARATION

- Create and Maintain a List of
 - Authorised access points, including:
 - SSIDs.
 - MAC addresses.
 - Locations.
 - Employee devices allowed to connect to Wi-Fi.

Email Templates

- Notify employees about suspicious Wi-Fi networks.
- Communicate with IT teams about identifying rogue devices.

• Tools and Equipment

- Wireless Intrusion Prevention Systems (WIPS) configured to detect and block unauthorised access points.
- Wi-Fi heatmaps to identify areas vulnerable to rogue AP placement.
- Ensure that:
 - Access points are secured with strong encryption (e.g., WPA3).
 - MAC filtering is implemented for additional security.
 - Network segmentation is in place to limit access for connected devices.

• Perform Firedrill

- Validate the playbook annually by simulating:
 - The detection of a rogue AP.
 - Mitigation scenarios.

Review Threat Intelligence

- Monitor trends in Wi-Fi-based attacks.
- Stay updated on vulnerabilities in wireless protocols or devices.

2. DETECT

MD1. Identify Threat Indicators

- Alerts
 - WIPS/Network Monitoring Tools
 - Detection of unauthorised SSIDs.
 - MAC address spoofing attempts.
 - SIEM
 - Anomalous device connections.
 - Unusual traffic patterns associated with new devices.
- Notifications
 - Employees reporting suspicious Wi-Fi networks.
 - External alerts from vendors or service providers about Wi-Fi-related vulnerabilities.

MD2. Identify Risk Factors

- Common Risks
 - Credential theft via rogue AP.
 - Man-in-the-middle (MITM) attacks.
 - Malware injection.

Company-Specific Risks

- Sensitive data interception from employees.
- Potential exposure of corporate assets to external attackers.

MD3. Data Collection

- Wireless Scans
 - Use tools like Aircrack-ng, Kismet or enterprise WIPS to detect rogue APs.
 - Look for:
 - SSIDs mimicking legitimate networks.
 - Unfamiliar MAC addresses.
- Logs
 - Analyse Wi-Fi logs for devices connecting to suspicious networks.

Device Behaviour

 Identify devices exhibiting abnormal traffic patterns or excessive beacon frames.

MD4. Categorise

- Types of Rogue APs
 - Personal hotspots set up by employees.
 - Malicious APs set up by attackers to intercept traffic.
 - Misconfigured legitimate APs.

MD5. Is it an Advanced Attack?

- Indicators of advanced attacks include:
 - Rogue APs configured to use encryption identical to corporate APs.
 - Targeted MITM activities or credential theft.

MD6. Triage

Determine Impact and Scope

- Number of devices connected to the rogue AP.
- Potential data intercepted or manipulated.

MD7. Is it a False Positive?

- Document and close if false (e.g., an employee's personal hotspot).
- If true: escalate and proceed to Analyse phase.

3.ANALYSE

MA1. Verify

• Confirm the rogue AP's existence using multiple tools (e.g., Wi-Fi heatmaps and scanners).

MA2. Identify IOCs

- Identify key indicators such as:
 - Unauthorised SSID names.
 - MAC addresses spoofing legitimate APs.
 - Devices connecting to both legitimate and rogue networks.

MA3. Extract IOCs

- Record all:
 - SSIDs, BSSIDs and channels used by the rogue AP.
 - Associated devices and their activities.

MA4. Submit to Partners

• Share findings with network device vendors if advanced techniques are involved.

MA5. Scan Enterprise

• Verify that no other rogue APs are present in the environment.

4. CONTAIN / ERADICATE

MC1. Contain the Rogue AP

- Use WIPS or manual tools to deauthenticate rogue AP connections.
- Physically locate and disable the rogue AP if possible.

MC2. Eradicate

- Block rogue AP MAC addresses on the network.
- Identify and address vulnerabilities exploited to set up the rogue AP.

MC3. Validate

- Confirm the rogue AP is no longer broadcasting or accessible.
- Rescan the area for any signs of additional rogue devices.

5. RECOVER

MR1. Restore Operations

- Educate users to avoid connecting to unverified networks.
- Strengthen Wi-Fi security policies.

- Review the incident and identify:
 - Gaps in detection or response.
 - Weaknesses in current Wi-Fi security measures.
- Update the playbook and security protocols based on findings.

SQL INJECTION ATTACK PLAYBOOK

1. PREPARATION

Security Controls

- Implement input validation and sanitisation for web applications.
- Use prepared statements or parameterised queries in database interactions.
- Apply Web Application Firewall (WAF) rules to detect and block injection patterns.

Asset Inventory

 Maintain an up-to-date list of all databases and web applications, including endpoints handling user inputs.

Access Controls

- Ensure least privilege access for database users.
- Regularly review and rotate database credentials.

Monitoring Tools

- Configure SIEM tools to monitor:
 - Database logs for anomalous queries.
 - Unauthorised changes to data.
- Set up alerts for suspicious URL patterns or payloads detected in HTTP traffic.

Incident Drills

 Simulate SQL injection scenarios to test detection and response procedures.

2. DETECT

MD1. Identify Threat Indicators

- Alerts
 - WAF: Detection of common SQL injection payloads like 'OR '1'='1 or UNION SELECT.
 - SIEM: Unusual database queries, such as:
 - DROP TABLE commands.
 - Mass exfiltration of sensitive data.
 - Queries from unauthorised IPs.
- Logs
 - Web server logs: Unusual query strings in GET/POST requests.
 - Database logs:
 - Queries executed outside normal application patterns.
 - Login attempts using non-application accounts.

MD2. Identify Risk Factors

- Common Risks
 - Data theft or unauthorised modifications.
 - Database corruption or deletion.
 - Privilege escalation in the database.

Company-Specific Risks

- Compromise of sensitive customer data (e.g., PII).
- Breach of compliance standards (e.g., GDPR, HIPAA).

MD3. Data Collection

- Payload Analysis
 - Examine malicious inputs submitted via web forms, URLs or APIs.
 - Review WAF logs for blocked or allowed suspicious requests.

• Database Queries

• Correlate suspicious input with the database queries executed during the same timeframe.

MD4. Categorise

- Injection Types
 - Error-Based SQL Injection (visible database errors).
 - Union-Based SQL Injection (data exfiltration via UNION SELECT).
 - Blind SQL Injection (true/false payloads with no direct error feedback).

MD5. Is it an Advanced Attack?

- Advanced indicators:
 - Use of out-of-band (OOB) channels to exfiltrate data (e.g., DNS).
 - Automated tools like SQLmap detected in logs.
 - Cross-database queries targeting linked servers.

MD6. Triage

- Assess Impact
 - Severity of data accessed or modified.
 - Whether the attacker achieved code execution or database control.
- Prioritisation
 - High-priority if sensitive data was accessed or database availability is at risk.

MD7. Is it a False Positive?

- Validation
 - Cross-check suspicious activity with developers.
 - Confirm anomalies in database or web server logs.

Resolution

• Document and close if a false positive.

3.ANALYSE

MA1. Verify

- Confirm SQL injection by:
 - Reproducing the malicious payload in a secure test environment.
 - Checking application responses and database logs.

MA2. Identify IOCs

- Common indicators include:
 - Exploited input fields (e.g., login forms, search boxes).
 - Suspicious query patterns in database logs.

MA3. Extract IOCs

• Document malicious payloads, IP addresses and timestamps.

MA4. Submit to Partners

• Share findings with WAF vendors or database administrators.

MA5. Scan Enterprise

• Perform web application vulnerability scans to identify other SQL injection risks.

4. CONTAIN / ERADICATE

MC1. Contain the Threat

- Block offending IPs at the firewall or WAF.
- Disable compromised application endpoints temporarily.

MC2. Eradicate the Root Cause

- Patch the vulnerable web application.
- Implement stricter input validation and sanitisation.
- Apply updates to WAF rules to block similar payloads.

MC3. Validate

• Test the application to confirm that SQL injection is no longer exploitable.

5. RECOVER

MR1. Restore Operations

- Restore corrupted or deleted data from backups.
- Reactivate application endpoints after testing.

- Review the attack vector and determine how it was missed during development or testing.
- Strengthen application security by adopting secure coding practices.
- Update the playbook and train developers and analysts to handle similar incidents.

STEGANOGRAPHY-BASED DATA EXFILTRATION PLAYBOOK

1. PREPARATION

Security Controls

- Monitor outbound data traffic for anomalies in file formats and sises.
- Use DLP (Data Loss Prevention) tools to scan file content for hidden payloads.
- Implement strict access controls on sensitive files and databases.

Employee Awareness

 Train employees to recognise signs of steganography, such as modified image or audio files.

Policies

- Restrict unnecessary use of multimedia files for transferring sensitive data.
- Enforce the use of encryption and file integrity checks for sensitive data transfers.

Threat Intelligence

 Gather Intelligence on known steganography tools like Steghide, OpenStego and Outguess.

2. DETECT

MD1. Identify Threat Indicators

- Anomalous Network Activity
 - Increased outbound traffic of seemingly innocuous files (e.g., JPG, PNG, MP3).
 - Files with unusual patterns, such as higher-than-expected sises or irregular metadata.

System Logs

- Tools like exiftool or strings being executed on critical systems.
- Usage of uncommon commands to interact with multimedia files.
- User Behaviour
 - Sudden increase in file downloads or uploads by an employee.
 - Access to steganography-related tools or websites.

MD2. Identify Risk Factors

- Common Risks
 - Exfiltration of intellectual property or sensitive customer data.
 - Stealthy distribution of malicious payloads embedded in files.

Company-Specific Risks

• Leakage of proprietary research, trade secrets or classified designs.

MD3. Data Collection

- File Analysis
 - Extract metadata and check for anomalies (e.g., timestamps, editing history).
 - Use steganalysis tools to examine files for hidden data.

Network Traffic

- Capture and analyse outbound traffic for suspicious file transfers.
- Look for encrypted payloads disguised in multimedia file uploads.

MD4. Categorise

• Steganography Type

- Image-based: Data hidden in image pixel values (e.g., LSB embedding).
- Audio-based: Hidden data in inaudible frequencies or audio noise.
- Video-based: Modifications to frame data or metadata.

MD5. Is it an Advanced Attack?

- Advanced indicators include:
 - Use of custom or unknown steganography tools.
 - Encrypted or obfuscated payloads requiring specialised decoding techniques.

MD6. Triage

- Assess Impact
 - Severity of the data exfiltrated and its potential misuse.
- Prioritisation
 - High-priority if sensitive data or critical intellectual property is leaked.

MD7. Is it a False Positive?

- Validation
 - Compare the suspicious files to legitimate versions.
 - Verify user actions and network logs.

3.ANALYSE

MA1. Verify

- Use steganalysis tools like StegSpy, StegExpose or custom scripts to confirm hidden data.
- Decode payloads using the identified tool or method.

MA2. Identify IOCs

- Indicators include:
 - Modified multimedia files.
 - Specific tools or scripts executed.
 - Network destinations for exfiltration.

MA3. Extract IOCs

• Document the tools, techniques and destinations used in the attack.

MA4. Submit to Partners

• Share findings with threat intelligence teams or law enforcement if necessary.

MA5. Scan Enterprise

• Search for other suspicious files or tools within the network.

4. CONTAIN / ERADICATE

MC1. Contain the Threat

- Isolate the system or user account involved in the attack.
- Block outbound communications to the identified destinations.

MC2. Eradicate the Root Cause

- Remove the steganography tools and suspicious files from systems.
- Patch vulnerabilities exploited to introduce steganography tools.

MC3. Validate

• Conduct a thorough scan to confirm no hidden payloads remain.

5. RECOVER

MR1. Restore Operations

- Re-enable affected systems after remediation.
- Restore any corrupted or altered data from backups.

6. LESSONS LEARNT

• Review the incident to identify gaps in detection and response.

- Update security policies to prevent misuse of multimedia files.Enhance employee training on the risks of steganography.

CACHE POISONING ATTACK PLAYBOOK

1. PREPARATION

Security Controls

- Enforce cache validation policies, such as requiring strong ETags or Last-Modified headers.
- Use HTTPS with proper certificate validation to prevent man-in-the-middle attacks.
- Enable Content Security Policies (CSP) to limit the impact of poisoned content.

System Hardening

- Configure caching layers (e.g., CDNs, proxies) to verify upstream responses.
- Disable caching for user-specific or sensitive data.
- Threat Intelligence
 - Stay updated on vulnerabilities in caching systems and applications.

2. DETECT

MD1. Identify Threat Indicators

- Network Activity
 - Suspicious or malformed cache-control headers in HTTP responses.
 - High frequency of cache misses followed by unexpected hits serving incorrect data.
- User Behaviour
 - Increased reports of users seeing outdated, malicious or irrelevant content.
- Application Logs
 - Unusual request patterns targeting cacheable resources.
 - Exploitation attempts on specific endpoints using query parameters or fragments.

MD2. Identify Risk Factors

- Common Risks
 - Distribution of malicious scripts, phishing pages or redirects to users.
 - Tarnished reputation due to users receiving compromised content.

Company-Specific Risks

• Poisoning of public-facing resources like product pages or login forms.

MD3. Data Collection

- Log Analysis
 - Examine web server logs for suspicious GET/POST requests.

• Analyse responses from cache servers for manipulated headers or payloads.

Traffic Capture

- Monitor traffic to detect altered content in HTTP responses.
- Verify cache key collisions caused by manipulated requests.

MD4. Categorise

- Type of Cache Poisoning
 - HTTP Header Injection: Manipulating headers like Content-Type or Cache-Control.
 - Query String Poisoning: Exploiting improper cache key validation.
 - CDN Cache Misconfiguration: Leveraging incorrect caching rules in a CDN.

MD5. Is it an Advanced Attack?

- Indicators of advanced attacks:
 - Use of zero-day exploits targeting caching layers.
 - Highly customised payloads affecting specific user groups or geographies.

MD6. Triage

- Assess Impact
 - Severity of poisoned content and its potential reach.
- Prioritisation
 - High-priority if sensitive or widely accessed content is compromised.

MD7. Is it a False Positive?

- Validation
 - Compare cached responses with the original content from the origin server.

3. ANALYSE

MA1. Verify

- Use tools like curl or web debugging proxies to fetch and validate cached content.
- Identify discrepancies between cached and source data.

MA2. Identify IOCs

- Indicators include:
 - Unexpected headers or payloads in cached responses.
 - Suspicious query strings causing unexpected cache hits.

MA3. Extract IOCs

• Document compromised URLs, query parameters or headers.

MA4. Submit to Partners

• Share IOCs with CDN or caching service providers to update their security rules.

MA5. Scan Enterprise

• Search for similar vulnerabilities across other endpoints or caching layers.

4. CONTAIN / ERADICATE

MC1. Contain the Threat

- Purge the cache to remove poisoned content.
- Temporarily disable caching on affected resources.

MC2. Eradicate the Root Cause

- Patch vulnerabilities in the web application or caching configuration.
- Fix improper cache key validation mechanisms.

MC3. Validate

• Ensure updated cache configurations prevent recurrence.

5. RECOVER

MR1. Restore Operations

- Resume caching with updated policies and configurations.
- Reassure users by publicly addressing the incident and its resolution.

- Conduct a post-incident review to identify the attack vector and missed controls.
- Update cache configurations and implement stricter validation policies.
- Train developers and IT teams on secure caching practices.

HOMOGRAPH ATTACK PLAYBOOK

1. PREPARATION

Security Controls

- Enable Unicode-aware phishing protection in web browsers.
- Implement strict domain registration monitoring for typosquatting or homograph domains.
- Use a secure DNS resolver that blocks known malicious domains.
- User Awareness
 - Educate users about homograph attacks and the importance of verifying URLs before interacting.
 - Regularly remind users to avoid clicking unknown or suspicious links.

Technology Setup

- Configure email filters to flag or block messages with deceptive URLs.
- Deploy endpoint protection tools to detect and block access to suspicious domains.

2. DETECT

MD1. Identify Threat Indicators

Network Indicators

- Requests to domains containing Unicode characters that mimic legitimate ones.
- DNS lookups for newly registered or suspicious domains with slight visual differences.

User Reports

• Complaints about being redirected to unexpected or malicious sites after clicking links.

• Email Indicators

- Phishing emails containing links to homograph domains.
- Presence of Punycode URLs (e.g., <u>http://xn--example-dk3a.com)</u>.

MD2. Identify Risk Factors

- Common Risks
 - Credential theft through phishing sites mimicking legitimate login portals.
 - Malicious downloads served from lookalike domains.
- Company-Specific Risks
 - Brand impersonation resulting in reputational damage.
 - Financial fraud targeting customers or employees.

MD3. Data Collection

- Log Analysis
 - Check DNS, proxy and web server logs for unusual domain names or requests.
 - Search for traffic directed toward domains containing visually deceptive characters.
- Email Analysis
 - Investigate flagged emails for links leading to homograph domains.
- Threat Intelligence
 - Leverage databases of known malicious homograph domains.

MD4. Categorise

- Attack Vectors
 - Phishing: Mimicking login pages or financial websites.
 - Malware Distribution: Serving malicious payloads via lookalike domains.
 - Brand Abuse: Using homograph domains to impersonate company assets.

MD5. Is it an Advanced Attack?

- Advanced indicators:
 - Use of dynamic DNS or bulletproof hosting to avoid detection.
 - Targeted campaigns against high-value individuals (e.g., spear phishing).

MD6. Triage

- Assess Impact
 - Identify users or systems interacting with the malicious domain.
 - Evaluate the potential data exposure or financial loss.
- Prioritisation
 - High-priority if sensitive data is at risk or if a significant number of users are targeted.

MD7. Is it a False Positive?

• Verify whether the domain is legitimately owned or a registered homograph.

3. ANALYSE

MA1. Verify

- Use WHOIS and threat intelligence tools to identify the domain's registration details.
- Access the domain via a sandbox to validate its content and purpose.

MA2. Identify IOCs

• Extract domain names, IP addresses and Punycode representations as indicators.

MA3. Extract IOCs

• Collect and document malicious domain details, phishing page screenshots and associated IPs.

MA4. Submit to Partners

• Share IOCs with DNS providers, threat intelligence platforms and browser vendors.

MA5. Scan Enterprise

• Identify other instances of interaction with the homograph domain across the network.

4. CONTAIN / ERADICATE

MC1. Contain the Threat

- Block access to the homograph domain via DNS and proxy.
- Remove any cached links or emails containing the malicious URLs.

MC2. Eradicate the Root Cause

- Shut down the malicious domain by contacting the registrar or hosting provider.
- Strengthen email filters to detect similar threats in the future.

MC3. Validate

• Confirm that the malicious domain is inaccessible across the organisation.

5. RECOVER

MR1. Restore Operations

- Notify affected users about the incident and advise them to change any exposed credentials.
- Conduct a security review of processes that failed to block the threat.

- Conduct a retrospective analysis to improve monitoring and detection of homograph domains.
- Update training programs to raise awareness about the attack method.
 Regularly monitor for domain impersonation attempts involving the company's brand.

DENIAL-OF-SERVICE (DoS) ATTACK PLAYBOOK

1. PREPARATION

Security Controls

- Deploy a Web Application Firewall (WAF) to filter and block malicious traffic.
- Set rate-limiting policies on servers and APIs to handle traffic spikes.
- Enable DDoS protection services (e.g., Cloudflare, AWS Shield).

Incident Response Setup

- Establish a DoS response team with clear roles and responsibilities.
- Maintain updated network diagrams and asset inventories.

User Awareness

 Train staff to recognise symptoms of DoS attacks, such as sudden system unavailability.

2. DETECT

MD1. Identify Threat Indicators

- Network Indicators
 - Sudden spikes in inbound traffic, particularly from a single source or range.
 - Multiple repeated requests to a single endpoint.
 - $_{\circ}$ $\,$ Saturation of network bandwidth or server resources.
- System Indicators
 - High CPU or memory utilisation on affected systems.
 - Increased response times or timeouts for legitimate users.

MD2. Identify Risk Factors

- Common Risks
 - Temporary unavailability of critical services or websites.
 - Financial loss due to service downtime.

Company-Specific Risks

- Disruption to customer-facing applications, damaging brand reputation.
- Potential exploitation of service downtime for follow-up attacks.

MD3. Data Collection

- Log Analysis
 - Review firewall, router and server logs for abnormal traffic patterns.
 - Identify traffic sources, protocols and frequency of requests.
- Traffic Analysis
 - Use network monitoring tools (e.g., Wireshark, SolarWinds) to analyse packet flow.

MD4. Categorise

Attack Vectors

- TCP SYN Flood: Exploiting handshake requests to exhaust server resources.
- UDP Flood: Overloading servers with high volumes of UDP packets.
- HTTP GET/POST Flood: Bombarding web applications with HTTP requests.

MD5. Is it an Advanced Attack?

Indicators of Advanced Attacks

- Large-scale Distributed Denial-of-Service (DDoS) involving botnets.
- Use of spoofed IP addresses to evade detection.
- Layer 7 (application layer) attacks designed to bypass traditional defences.

MD6. Triage

- Assess Impact
 - Identify the systems and services affected by the attack.
 - Evaluate the downtime duration and business impact.
- Prioritisation
 - High-priority if critical services are down or if the attack affects a large user base.

MD7. Is it a False Positive?

• Compare traffic patterns to historical data to rule out legitimate traffic spikes.

3.ANALYSE

MA1. Verify

• Confirm the attack by cross-referencing logs, traffic analysis and user reports.

MA2. Identify IOCs

• Extract attacker IP addresses, payload patterns and unusual traffic volumes.

MA3. Extract IOCs

• Document the attack's characteristics, including protocol type and source details.

MA4. Submit to Partners

• Share IOCs with your ISP and security service providers for mitigation assistance.

MA5. Scan Enterprise

• Investigate whether internal systems contributed to the attack (e.g., compromised devices).

4. CONTAIN / ERADICATE

MC1. Contain the Threat

- Implement rate-limiting rules on affected endpoints.
- Block malicious IP addresses or ranges at the firewall level.
- Redirect traffic through a DDoS mitigation service.

MC2. Eradicate the Root Cause

- Patch and harden exposed services to prevent abuse.
- Disable unused network services that could be exploited.

MC3. Validate

• Verify that legitimate traffic can access the service and malicious traffic is blocked.

5. RECOVER

MR1. Restore Operations

- Gradually lift rate limits or restrictions to normalise service delivery.
- Monitor traffic to ensure there is no resurgence of malicious activity.

MR2. Post-Incident Recovery

- Communicate with affected users, explaining the downtime and corrective measures.
- Perform a comprehensive system health check.

- Conduct a post-mortem analysis to identify gaps in detection and mitigation.
- Update playbooks and implement additional controls based on the attack vector.
- Regularly test the response to simulated DoS attacks to improve readiness.

MALWARE ATTACK PLAYBOOK

1. PREPARATION

Security Controls

- Deploy Endpoint Detection and Response (EDR) solutions for continuous monitoring and response.
- Ensure antivirus and anti-malware tools are updated across all endpoints.
- Implement application whitelisting to block unauthorised software execution.
- Use network segmentation to minimise malware spread.
- Enforce least privilege for users and applications to limit damage.

Asset Inventory

- Maintain a detailed inventory of all critical systems and software.
- Identify systems prone to malware attacks (e.g., email servers, endpoints).

Access Controls

- Enforce multi-factor authentication (MFA) for remote and privileged access.
- Regularly audit access permissions and revoke unnecessary rights.

Monitoring Tools

- Configure SIEM tools to monitor:
 - Anomalous file changes (e.g., sudden encryption of files).
 - Execution of unusual processes or scripts.
 - Traffic to known malicious IPs/domains.

Incident Drills

- Simulate malware infection scenarios (e.g., ransomware, trojans) to test detection and containment plans.
- Train employees to recognise phishing emails and malicious links.

2. DETECT

• MD1. Identify Threat Indicators

- Alerts
 - EDR: Detection of suspicious file executions or privilege escalations.
 - SIEM: Unusual network connections (e.g., C2 traffic).
- o **Logs**
 - Endpoint logs: New or unusual file executions (e.g., .exe, .dll or PowerShell scripts).
 - Network logs: Large data transfers to unknown IPs or domains.

• MD2. Identify Risk Factors

• Common Risks

- Data exfiltration or loss.
- Lateral movement across the network.
- Disruption of operations via ransomware.
- Company-Specific Risks

- Breach of intellectual property or proprietary data.
- Impact on compliance with standards like GDPR, HIPAA.

MD3. Data Collection

- Analyse malicious files for hashes and behavior.
- Review logs for the initial infection vector (e.g., phishing email, compromised website).

• MD4. Categorise

- Malware Types:
 - Ransomware (encrypting files for ransom).
 - Spyware (stealing sensitive data).
 - Worms (spreading without user action).
- Delivery Methods:
 - Email attachments, malicious links or removable media.

• MD5. Is it an Advanced Attack?

- Advanced indicators:
 - Use of zero-day exploits.
 - Sophisticated obfuscation techniques in malware.
 - Presence of advanced persistent threat (APT) groups.

• MD6. Triage

- Assess the malware's impact on critical systems and data.
- Prioritise based on potential data theft or business disruption.

• MD7. Is it a False Positive?

- Validate suspicious activity against known legitimate processes.
- Cross-reference with threat intelligence sources for confirmation.

3. ANALYSE

- MA1. Verify
 - Reproduce malware activity in a sandbox environment.
 - Analyse application logs and system behaviors.

• MA2. Identify IOCs

- File hashes (e.g., MD5, SHA256).
- C2 server IPs or domains.
- Registry changes or system configurations modified.

• MA3. Extract IOCs

• Document infected files, URLs and attack timestamps.

• MA4. Submit to Partners

• Share findings with antivirus vendors and threat intelligence partners.

• MA5. Scan Enterprise

• Perform a full malware scan across endpoints, servers and networks.

4. CONTAIN / ERADICATE

• MC1. Contain the Threat

- Isolate infected systems by disconnecting them from the network.
- Block malicious domains and IPs via firewalls or DNS filtering.

• MC2. Eradicate the Root Cause

- Remove malware using updated antivirus or EDR tools.
- Patch vulnerabilities exploited by the malware.

MC3. Validate

• Perform post-removal scans to ensure no malware remnants remain.

5. RECOVER

• MR1. Restore Operations

- Recover files and systems from secure, verified backups.
- Reactivate systems only after thorough testing.

• MR2. Communicate

• Notify stakeholders of recovery status and any required actions.

- Review infection vector and assess why security controls failed.
- Strengthen employee training programs to improve phishing detection.
- Update the playbook with new IOCs and remediation strategies.
- Evaluate the effectiveness of tools used and identify gaps.

PHISHING ATTACK PLAYBOOK

1. PREPARATION

Security Controls

- Deploy email filtering solutions to detect and block phishing emails.
- Enable domain-based email authentication (e.g., SPF, DKIM, DMARC).
- Use anti-phishing browser extensions and tools for employees.
- Regularly update email clients and security software.

Asset Inventory

- Maintain an inventory of business-critical email accounts and systems.
- Identify high-value targets (e.g., executives, HR and finance personnel).

Access Controls

- Enforce MFA for all email accounts, especially for privileged users.
- Regularly audit and update access permissions for sensitive data.

Monitoring Tools

- Configure SIEM tools to monitor:
 - Unusual email login locations.
 - Sudden email forwarding rule changes.
 - Suspicious email activity, such as mass outbound emails.

Incident Drills

- Simulate phishing attacks (e.g., spear-phishing exercises) to assess employee awareness.
- Train employees to recognise phishing indicators, such as mismatched domains and suspicious links.

2. DETECT

• MD1. Identify Threat Indicators

• Alerts

- Email gateway: Detection of malicious attachments or links.
- SIEM: Login attempts from unusual locations or devices.
- o Logs
 - Email server logs:
 - Emails containing suspicious links or attachments.
 - Anomalies in sent or received email volumes.
 - User reports: Suspicious emails forwarded to the security team.

• MD2. Identify Risk Factors

• Common Risks

- Credential theft via phishing pages.
- Data exfiltration or unauthorised access to accounts.

Company-Specific Risks

- Financial fraud through compromised accounts.
- Breach of sensitive customer or employee data.

• MD3. Data Collection

- Analyse email headers for sender IPs and domains.
- Inspect URLs for signs of phishing (e.g., typosquatting, shortened links).
- Retrieve user activity logs for suspicious actions after clicking links.

• MD4. Categorise

- Phishing Types:
 - **Spear Phishing:** Targeted at specific individuals or departments.
 - Whaling: Targeting executives or high-profile employees.
 - **Clone Phishing:** Mimicking legitimate emails.

MD5. Is it an Advanced Attack?

- $_{\circ}$ $\,$ Advanced indicators:
 - Use of compromised legitimate email accounts.
 - Sophisticated phishing kits with evasion techniques.
 - Multi-stage attacks involving malware or additional phishing.

MD6. Triage

- Prioritise incidents involving:
 - High-value accounts (e.g., executives, finance).
 - Access to sensitive data or financial systems.

• MD7. Is it a False Positive?

- Validate suspicious emails by cross-referencing with legitimate communications.
- Confirm with users if unusual activities (e.g., new email rules) were intentional.

3. ANALYSE

• MA1. Verify

- Reproduce email actions in a secure environment (e.g., opening links in isolated browsers).
- Check for phishing indicators in the email's content, attachments and URLs.

• MA2. Identify IOCs

- Common indicators include:
 - Phishing domains or URLs.
 - Email sender addresses and IPs.
 - Malicious attachments (e.g., .exe, .xlsm).

• MA3. Extract IOCs

 Document all malicious indicators, including timestamps and user interactions.

• MA4. Submit to Partners

 Share phishing indicators with email security vendors and threat intelligence providers.

• MA5. Scan Enterprise

• Check other users for emails from the same sender or with similar indicators.

 Monitor for additional login attempts or suspicious activities linked to phishing.

4. CONTAIN / ERADICATE

• MC1. Contain the Threat

- Block phishing domains and sender IPs at the email gateway.
- Quarantine suspicious emails from all user inboxes.
- $_{\circ}$ $\,$ Reset credentials for affected accounts immediately.

• MC2. Eradicate the Root Cause

- Remove malicious email rules or auto-forwarding set by attackers.
- Strengthen email authentication (e.g., SPF, DKIM, DMARC).

MC3. Validate

- Conduct phishing tests to ensure users recognise similar future threats.
- Review logs to confirm no residual malicious activity.

5. RECOVER

• MR1. Restore Operations

- Re-enable affected accounts and email services after thorough checks.
- Notify impacted users about the steps taken and additional precautions.

• MR2. Communicate

• Inform stakeholders of the incident resolution and preventive measures implemented.

- Review how the phishing email bypassed existing security controls.
- Update employee training programs with lessons from the incident.
- Strengthen detection and response procedures for email-based threats.
- Update the playbook with new phishing tactics and IOCs.

WATERING HOLE ATTACK PLAYBOOK

1. PREPARATION

Security Controls

- Deploy robust web filtering solutions to prevent access to malicious websites.
- Conduct regular security assessments of websites frequently visited by employees.
- Use endpoint protection with real-time detection for malicious web content.
- Ensure browsers, plugins and operating systems are up to date with the latest security patches.

Asset Inventory

- Identify and document commonly visited websites critical for business operations.
- Maintain an up-to-date inventory of employee devices and software.
- Access Controls
 - Limit administrative privileges to reduce the impact of compromise.
 - Enforce network segmentation to isolate critical systems.
- Monitoring Tools
 - Configure SIEM tools to monitor:
 - Outbound traffic to known or suspected malicious domains.
 - DNS requests for unusual or newly registered domains.
 - Deploy Intrusion Detection Systems (IDS) to detect exploit kits or malware payloads.

• Incident Drills

- Simulate watering hole scenarios to test detection and response capabilities.
- Train employees on safe browsing habits and recognising potential website compromises.

2. DETECT

• MD1. Identify Threat Indicators

• Alerts

- IDS/IPS: Detection of exploit kits in HTTP traffic.
- SIEM: DNS lookups for malicious or newly registered domains.
- Endpoint detection: Malware payloads downloaded from compromised websites.

o Logs

- Web proxy logs: Unusual traffic patterns to compromised sites.
- Browser activity logs: Sudden or unexpected redirects.
- MD2. Identify Risk Factors
 - Common Risks

- Exploitation of unpatched vulnerabilities via malicious code.
- Malware infections on employee devices.
- Exfiltration of credentials or sensitive data.

• Company-Specific Risks

- Targeting websites frequently used by employees (e.g., industry forums, vendor portals).
- Compromise of high-value devices or accounts.

MD3. Data Collection

- Analyse web traffic logs for connections to known watering hole sites.
- Retrieve payloads delivered during the attack for analysis in a secure sandbox.

• MD4. Categorise

- Watering Hole Variants:
 - Browser Exploits: Injected scripts that exploit browser vulnerabilities.
 - Drive-By Downloads: Automatic malware downloads without user interaction.
 - **Credential Theft:** Redirection to fake login pages.

• MD5. Is it an Advanced Attack?

- Advanced indicators:
 - Use of zero-day browser or plugin exploits.
 - Targeting specific industries or companies.
 - Advanced malware with lateral movement capabilities.

• MD6. Triage

- Prioritise incidents involving:
 - Access to internal systems or sensitive data.
 - High-value or privileged user accounts.

• MD7. Is it a False Positive?

- Validate flagged websites with threat intelligence feeds.
- Confirm whether unusual activity was legitimate or benign.

3.ANALYSE

- MA1. Verify
 - Reproduce suspicious website interactions in a controlled test environment.
 - Examine scripts or embedded content for malicious code.
- MA2. Identify IOCs
 - Common indicators include:
 - Malicious JavaScript or HTML injections.
 - Malware payloads downloaded from compromised sites.
 - Suspicious IP addresses or domains hosting malicious content.
- MA3. Extract IOCs
 - Document malicious URLs, IP addresses, payloads and timestamps.
- MA4. Submit to Partners

- Share findings with threat intelligence providers and affected website operators.
- MA5. Scan Enterprise
 - Check endpoints for malware infections linked to the watering hole site.
 - Conduct a vulnerability scan to identify unpatched systems.

4. CONTAIN / ERADICATE

- MC1. Contain the Threat
 - Block malicious domains and IP addresses in web filtering and firewalls.
 - Isolate infected devices from the network.

• MC2. Eradicate the Root Cause

- Remove malware or malicious payloads from affected devices.
- Apply patches for exploited vulnerabilities.
- Work with website administrators to secure compromised watering hole sites.
- MC3. Validate
 - Verify that all IOCs have been mitigated and that systems are no longer vulnerable.
 - Conduct post-incident scans to confirm the absence of residual threats.

5. RECOVER

- MR1. Restore Operations
 - Reintegrate isolated devices after confirming they are clean.
 - Resume normal browsing activities with enhanced monitoring.
- MR2. Communicate
 - Notify affected employees and stakeholders about the incident and preventive measures.

- Analyse how the watering hole site was compromised and how it targeted the company.
- Strengthen website monitoring practices and partnerships with frequently visited domains.
- Update security tools with new IOCs and rules to detect similar attacks.
- Train employees on updated safe browsing practices and phishing awareness.

ISLAND HOPPING ATTACK PLAYBOOK

1. PREPARATION

Security Controls

- Implement strict access controls for all third-party vendors and partners.
- Conduct regular security audits of third-party systems connected to your network.
- Apply network segmentation to minimise lateral movement from compromised third-party systems.
- Use multi-factor authentication (MFA) for all external connections.
- Monitor for supply chain and third-party risks with threat intelligence feeds.

Asset Inventory

- Maintain a detailed inventory of all third-party connections, systems and access levels.
- Document business-critical assets and their dependencies on third-party systems.

Access Controls

- Enforce least privilege for all third-party accounts and regularly review access permissions.
- Disable accounts immediately after contract termination or inactivity.

Monitoring Tools

- Configure SIEM tools to monitor:
 - Unusual activity in connections from third-party IPs.
 - Data exfiltration patterns or large data transfers.
 - Authentication attempts from unexpected locations or devices.
- Deploy endpoint detection and response (EDR) to identify suspicious activity on devices accessing the network.

Incident Drills

- Simulate scenarios where a third-party vendor or partner is compromised to test detection and response.
- Educate employees on recognising island hopping indicators, such as unusual partner system behavior.

2. DETECT

• MD1. Identify Threat Indicators

• Alerts

- SIEM: Anomalous access patterns from vendor systems.
- IDS/IPS: Detection of unusual file transfers or privilege escalation attempts.
- EDR: Signs of lateral movement originating from a trusted third-party connection.
- o **Logs**

- VPN logs: Unexpected logins from third-party users.
- Cloud platform logs: Sudden changes to access policies or unusual API calls.

• MD2. Identify Risk Factors

• Common Risks

- Lateral movement into sensitive systems.
- Exfiltration of critical or sensitive data.
- Deployment of ransomware or destructive malware.

Company-Specific Risks

- Compromise of customer data through vendor relationships.
- Disruption of operations due to compromised supply chain systems.

MD3. Data Collection

- Analyse network traffic for abnormal patterns between internal systems and third-party endpoints.
- Investigate authentication logs for suspicious third-party account activity.

• MD4. Categorise

- Island Hopping Variants:
 - **Supply Chain Exploits:** Compromising a vendor to infiltrate the organisation.
 - **Partner Pivoting:** Gaining access through compromised third-party accounts.
 - **Cloud Misconfigurations:** Exploiting third-party cloud integrations.

• MD5. Is it an Advanced Attack?

- Advanced indicators:
 - Use of legitimate credentials stolen from third parties.
 - Sophisticated malware or tools for lateral movement.
 - Coordinated attacks targeting multiple organisations via the same vendor.

• MD6. Triage

- Prioritise incidents involving:
 - High-value or sensitive data.
 - Connections to critical systems or infrastructure.

• MD7. Is it a False Positive?

- Verify activity with the affected third party.
- Validate alerts with cross-referenced logs from other monitoring tools.

3. ANALYSE

- MA1. Verify
 - Reproduce suspicious activity in a sandbox environment to confirm malicious behavior.
 - Review third-party communications or logs for signs of compromise.

• MA2. Identify IOCs

• Common indicators include:

- Unusual login times or IP addresses associated with third-party accounts.
- Suspicious API calls or system commands.

• MA3. Extract IOCs

- Document malicious IPs, URLs, file hashes and compromised accounts.
- MA4. Submit to Partners
 - Share IOCs with affected third parties and relevant industry groups.
- MA5. Scan Enterprise
 - Conduct a comprehensive scan for lateral movement or malware within the network.
 - Audit permissions for all third-party accounts and connections.

4. CONTAIN / ERADICATE

- MC1. Contain the Threat
 - Disable compromised third-party accounts or connections.
 - Block malicious IPs and domains in firewalls and web filters.

• MC2. Eradicate the Root Cause

- Work with the affected third party to remediate their systems.
- Patch any vulnerabilities exploited in your environment.
- Review and tighten network segmentation and access policies.

MC3. Validate

- Test connections and activity logs to ensure no further malicious activity.
- Conduct red team exercises to confirm the effectiveness of mitigations.

5. RECOVER

• MR1. Restore Operations

- Re-enable third-party access only after verifying the security of their systems.
- Restore impacted systems or data from backups.
- MR2. Communicate
 - Notify stakeholders, including customers, partners and regulatory bodies if necessary.
 - Provide a detailed post-incident report.

- Conduct a thorough post-incident review to understand how the third party was compromised.
- Update contracts and policies to enforce stricter cybersecurity requirements for vendors and partners.
- Enhance monitoring capabilities for third-party activity.
- Train employees and third-party users on cybersecurity best practices.

